Quantum key distribution has shown promising advances in information transmission security. In particular, quantum communication schemes based on entanglement have enormous potential to enhance the security and efficiency of information transmission. Therefore, today’s efforts address overcoming issues related to high data transmission and long-distance implementations to enable real-world quantum communication applications. Here, we experimentally demonstrate a multiplexing technique to enhance the secret key rate by exploiting the momentum correlation of photon pairs generated by spontaneous parametric downconversion. We distributed polarization-entangled photon pairs into opposite cores within a 19-core multicore fiber. We estimated the secret key rates in a configuration with 6 and 12 cores from the entanglement visibility after transmission through a 411-m-long multicore fiber. Our results can lead to the transmission of more information per photon and the establishment of novel quantum networks with one common communication channel, which opens the possibility of deploying new quantum channels over longer distances.
- Award ID(s):
- 2007203
- NSF-PAR ID:
- 10297994
- Date Published:
- Journal Name:
- 2020 54th Asilomar Conference on Signals, Systems, and Computers
- Page Range / eLocation ID:
- 433 to 438
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Quantum key distribution (QKD) has established itself as a groundbreaking technology, showcasing inherent security features that are fundamentally proven. Qubit-based QKD protocols that rely on binary encoding encounter an inherent constraint related to the secret key capacity. This limitation restricts the maximum secret key capacity to one bit per photon. On the other hand, qudit-based QKD protocols have their advantages in scenarios where photons are scarce and noise is present, as they enable the transmission of more than one secret bit per photon. While proof-of-principle entangled-based qudit QKD systems have been successfully demonstrated over the years, the current limitation lies in the maximum distribution distance, which remains at 20 km fiber distance. Moreover, in these entangled high-dimensional QKD systems, the witness and distribution of quantum steering have not been shown before. Here we present a high-dimensional time-bin QKD protocol based on energy-time entanglement that generates a secure finite-length key capacity of 2.39 bit/coincidences and secure cryptographic finite-length keys at 0.24 Mbits s−1in a 50 km optical fiber link. Our system is built entirely using readily available commercial off-the-shelf components, and secured by nonlocal dispersion cancellation technique against collective Gaussian attacks. Furthermore, we set new records for witnessing both energy-time entanglement and quantum steering over different fiber distances. When operating with a quantum channel loss of 39 dB, our system retains its inherent characteristic of utilizing large-alphabet. This enables us to achieve a secure key rate of 0.30 kbits s−1and a secure key capacity of 1.10 bit/coincidences, considering finite-key effects. Our experimental results closely match the theoretical upper bound limit of secure cryptographic keys in high-dimensional time-bin QKD protocols (Mower
et al 2013Phys. Rev. A87 062322; Zhanget al 2014Phys. Rev. Lett. 112 120506), and outperform recent state-of-the-art qubit-based QKD protocols in terms of secure key throughput using commercial single-photon detectors (Wengerowskyet al 2019Proc. Natl Acad. Sci. 116 6684; Wengerowskyet al 2020npj Quantum Inf. 6 5; Zhanget al 2014Phys. Rev. Lett. 112 120506; Zhanget al 2019Nat. Photon. 13 839; Liuet al 2019Phys. Rev. Lett. 122 160501; Zhanget al 2020Phys. Rev. Lett. 125 010502; Weiet al 2020Phys. Rev. X10 031030). The simple and robust entanglement-based high-dimensional time-bin protocol presented here provides potential for practical long-distance quantum steering and QKD with multiple secure bits-per-coincidence, and higher secure cryptographic keys compared to mature qubit-based QKD protocols. -
Quantum cryptography provides absolute security against an all-powerful eavesdropper (Eve). However, in practice Eve's resources may be restricted to a limited aperture size so that she cannot collect all paraxial light without alerting the communicating parties (Alice and Bob). In this paper we study a quantum wiretap channel in which the connection from Alice to Eve is lossy, so that some of the transmitted quantum information is inaccessible to both Bob and Eve. For a pureloss channel under such restricted eavesdropping, we show that the key rates achievable with a two-mode squeezed vacuum state, heterodyne detection, and public classical communication assistance-given by the Hashing inequality-can exceed the secret key distillation capacity of the channel against an omnipotent eavesdropper. We report upper bounds on the key rates under the restricted eavesdropping model based on the relative entropy of entanglement, which closely match the achievable rates. For the pure-loss channel under restricted eavesdropping, we compare the secret-key rates of continuous-variable (CV) quantum key distribution (QKD) based on Gaussian-modulated coherent states and heterodyne detection with the discrete variable (DV) decoystate BB84 QKD protocol based on polarization qubits encoded in weak coherent laser pulses.more » « less
-
An entanglement-based continuous variable (CV) QKD scheme is proposed, performing information reconciliation over an entanglement-assisted link. The same entanglement generation source is used in both raw key transmission and information reconciliation. The entanglement generation source employs only low-cost devices operated in the C-band. The proposed CV-QKD scheme with information reconciliation over an entanglement-assisted link significantly outperforms the corresponding CV-QKD scheme with information reconciliation over an authenticated public channel. It also outperforms the CV-QKD scheme in which a classical free-space optical communication link is used to perform information reconciliation. An experimental demonstration over the free-space optical testbed established at the University of Arizona campus indicates that the proposed CV-QKD can operate in strong turbulence regimes. To improve the secret key rate performance further, adaptive optics is used.
-
Hydropower facilities are often remotely monitored or controlled from a centralized remote control room. Additionally, major component manufacturers monitor the performance of installed components, increasingly via public communication infrastructures. While these communications enable efficiencies and increased reliability, they also expand the cyber-attack surface. Communications may use the internet to remote control a facility’s control systems, or it may involve sending control commands over a network from a control room to a machine. The content could be encrypted and decrypted using a public key to protect the communicated information. These cryptographic encoding and decoding schemes become vulnerable as more advances are made in computer technologies, such as quantum computing. In contrast, quantum key distribution (QKD) and other quantum cryptographic protocols are not based upon a computational problem, and offer an alternative to symmetric cryptography in some scenarios. Although the underlying mechanism of quantum cryptogrpahic protocols such as QKD ensure that any attempt by an adversary to observe the quantum part of the protocol will result in a detectable signature as an increased error rate, potentially even preventing key generation, it serves as a warning for further investigation. In QKD, when the error rate is low enough and enough photons have been detected, a shared private key can be generated known only to the sender and receiver. We describe how this novel technology and its several modalities could benefit the critical infrastructures of dams or hydropower facilities. The presented discussions may be viewed as a precursor to a quantum cybersecurity roadmap for the identification of relevant threats and mitigation.