skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Increasing the Raw Key Rate in Energy-Time Entanglement Based Quantum Key Distribution
A Quantum Key Distribution (QKD) protocol describes how two remote parties can establish a secret key by communicating over a quantum and a public classical channel that both can be accessed by an eavesdropper. QKD protocols using energy-time entangled photon pairs are of growing practical interest because of their potential to provide a higher secure key rate over long distances by carrying multiple bits per entangled photon pair. We consider a system where information can be extracted by measuring random times of a sequence of entangled photon arrivals. Our goal is to maximize the utility of each such pair. We propose a discrete-time model for the photon arrival process, and establish a theoretical bound on the number of raw bits that can be generated under this model. We first analyze a well-known simple binning encoding scheme, and show that it generates a significantly lower information rate than what is theoretically possible. We then propose three adaptive schemes that increase the number of raw bits generated per photon, and compute and compare the information rates they offer. Moreover, the effect of public channel communication on the secret key rates of the proposed schemes is investigated.  more » « less
Award ID(s):
2007203
PAR ID:
10297994
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2020 54th Asilomar Conference on Signals, Systems, and Computers
Page Range / eLocation ID:
433 to 438
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Quantum cryptography provides absolute security against an all-powerful eavesdropper (Eve). However, in practice Eve's resources may be restricted to a limited aperture size so that she cannot collect all paraxial light without alerting the communicating parties (Alice and Bob). In this paper we study a quantum wiretap channel in which the connection from Alice to Eve is lossy, so that some of the transmitted quantum information is inaccessible to both Bob and Eve. For a pureloss channel under such restricted eavesdropping, we show that the key rates achievable with a two-mode squeezed vacuum state, heterodyne detection, and public classical communication assistance-given by the Hashing inequality-can exceed the secret key distillation capacity of the channel against an omnipotent eavesdropper. We report upper bounds on the key rates under the restricted eavesdropping model based on the relative entropy of entanglement, which closely match the achievable rates. For the pure-loss channel under restricted eavesdropping, we compare the secret-key rates of continuous-variable (CV) quantum key distribution (QKD) based on Gaussian-modulated coherent states and heterodyne detection with the discrete variable (DV) decoystate BB84 QKD protocol based on polarization qubits encoded in weak coherent laser pulses. 
    more » « less
  2. An entanglement-based continuous variable (CV) QKD scheme is proposed, performing information reconciliation over an entanglement-assisted link. The same entanglement generation source is used in both raw key transmission and information reconciliation. The entanglement generation source employs only low-cost devices operated in the C-band. The proposed CV-QKD scheme with information reconciliation over an entanglement-assisted link significantly outperforms the corresponding CV-QKD scheme with information reconciliation over an authenticated public channel. It also outperforms the CV-QKD scheme in which a classical free-space optical communication link is used to perform information reconciliation. An experimental demonstration over the free-space optical testbed established at the University of Arizona campus indicates that the proposed CV-QKD can operate in strong turbulence regimes. To improve the secret key rate performance further, adaptive optics is used. 
    more » « less
  3. Hydropower facilities are often remotely monitored or controlled from a centralized remote control room. Additionally, major component manufacturers monitor the performance of installed components, increasingly via public communication infrastructures. While these communications enable efficiencies and increased reliability, they also expand the cyber-attack surface. Communications may use the internet to remote control a facility’s control systems, or it may involve sending control commands over a network from a control room to a machine. The content could be encrypted and decrypted using a public key to protect the communicated information. These cryptographic encoding and decoding schemes become vulnerable as more advances are made in computer technologies, such as quantum computing. In contrast, quantum key distribution (QKD) and other quantum cryptographic protocols are not based upon a computational problem, and offer an alternative to symmetric cryptography in some scenarios. Although the underlying mechanism of quantum cryptogrpahic protocols such as QKD ensure that any attempt by an adversary to observe the quantum part of the protocol will result in a detectable signature as an increased error rate, potentially even preventing key generation, it serves as a warning for further investigation. In QKD, when the error rate is low enough and enough photons have been detected, a shared private key can be generated known only to the sender and receiver. We describe how this novel technology and its several modalities could benefit the critical infrastructures of dams or hydropower facilities. The presented discussions may be viewed as a precursor to a quantum cybersecurity roadmap for the identification of relevant threats and mitigation. 
    more » « less
  4. Abstract Secret-key distillation from quantum states and channels is a central task of interest in quantum information theory, as it facilitates private communication over a quantum network. Here, we study the task of secret-key distillation from bipartite states and point-to-point quantum channels using local operations and one-way classical communication (one-way LOCC). We employ the resource theory of unextendible entanglement to study the transformation of a bipartite state under one-way LOCC, and we obtain several efficiently computable upper bounds on the number of secret bits that can be distilled from a bipartite state using one-way LOCC channels; these findings apply not only in the one-shot setting but also in some restricted asymptotic settings. We extend our formalism to private communication over a quantum channel assisted by forward classical communication. We obtain efficiently computable upper bounds on the one-shot forward-assisted private capacity of a channel, thus addressing a question in the theory of quantum-secured communication that has been open for some time now. Our formalism also provides upper bounds on the rate of private communication when using a large number of channels in such a way that the error in the transmitted private data decreases exponentially with the number of channel uses. Moreover, our bounds can be computed using semidefinite programs, thus providing a computationally feasible method to understand the limits of private communication over a quantum network. 
    more » « less
  5. Today's information society relies on cryptography to achieve security goals such as confidentiality, integrity, authentication, and non-repudiation for digital communications. Here, public-key cryptosystems play a pivotal role to share encryption keys and create digital signatures. However, quantum computers threaten the security of traditional public-key cryptosystems as they can tame computational problems underlying the schemes, i.e., discrete logarithm and integer factorization. The prospective arrival of capable-enough quantum computers already threatens today's secret communication in terms of their long-term secrecy when stored to be later decrypted. Therefore, researchers strive to develop and deploy alternative schemes.In this work, we evaluate a key exchange protocol based on combining public-key schemes with physical-layer security, anticipating the prospect of quantum attacks: If a powerful quantum attacker cannot immediately obtain a private key, legitimate parties have a window of short-term secrecy to perform a physical-layer jamming key exchange (JKE) to establish a long-term shared secret. Thereby, the protocol constraints the computation time available to the attacker to break the employed public-key cryptography. In this paper, we outline the protocol, discuss its security, and point out challenges to be resolved. 
    more » « less