skip to main content


Title: Angular Velocity Estimation using Non-coplanar Accelerometer Array
Over the last few decades, Gyro-Free Inertial Measurement Units (GF-IMUs) have been extensively researched to overcome the limitations of gyroscopes. This research presents a Non-coplanar Accelerometer Array (NAA) for estimating angular velocity with non-specific geometric arrangement of four or more triaxial accelerometers with non-coplanarity constraint. The presented proof of non-coplanar spacial arrangement also provides insights into propagation of the sensor noise and construction of the noise covariance matrices. The system noise depends on the singular values of the relative displacement matrix (between the sensors). A dynamical system model with uncorrelated process and measurement noise is proposed where the accelerometer readings are used simultaneously as process and measurement inputs. The angular velocity is estimated using an Extended Kalman Filter (EKF) that discretizes and linearizes the continuous-discrete time dynamical system. The simulations are performed on a Cube-NAA (Cu-NAA) comprising four accelerometers placed at different vertices of a cube.They analyze the estimation error for static and dynamic movement as the distance between the accelerometers (four accelerometers in cube-orientation) is varied. Here, the system noise is observed to decrease inversely with the length of the cube edge as the arrangement is kept identical. Consequently, the simulation results indicate asymptotic decrease in the standard error of estimation with edge length. The experiments are conducted on a Cu-NAA with five reflective optical markers. The reflective markers are visually tracked using Vicon® to construct the ground truth angular velocity. This unique experimental setup, apart from providing three degrees of rotational freedom of movement, also allows for three degrees of spacial translation (linear acceleration of the Cu-NAA in space). The simulation and experimental results indicate better performance of the proposed EKF as compared to one with correlated process and measurement noises.  more » « less
Award ID(s):
1832993
NSF-PAR ID:
10298073
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE Sensors Journal
ISSN:
1530-437X
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The present work demonstrates the development of a flexible, self-powered sensor patch that can be used to estimate angular acceleration and angular velocity, which are two essential markers for predicting concussions. The device monitors the dynamic strain experienced by the neck through a thin, polypropylene-based ferroelectret nanogenerator that produces a voltage pulse with profile proportional to strain. The intrinsic property of this device to convert mechanical input to electrical output, along with its flexibility and$$\sim$$100$$\mu$$μm thickness makes it a viable and practical device to be used as a wearable patch for athletes in high-contact sports. After processing the dynamic behavior of the produced voltage, a correspondence between the electric signal profile and the measurements from accelerometers integrated inside a human head and neck substitute was found. This demonstrates the ability of obtaining an electronic signature that can be used to extract head kinematics during collision, and creates a marker that could be used to detect concussions. Unlike accelerometer-based current trends on concussion-detection systems, which rely on sensors integrated in the athlete’s helmet, the flexible patch attached to the neck would provide information on the dynamics of the head movement, thus eliminating the potential of false readings from helmet sliding or peak angular acceleration.

     
    more » « less
  2. Smartphone MEMS (Micro Electrical Mechanical System) accelerometers have relatively low sensitivity and high output noise density. Therefore, it cannot be directly used to track feeble vibrations such as structural vibrations. This article proposes an effective increase in the sensitivity of the smartphone accelerometer utilizing the stochastic resonance (SR) phenomenon. SR is an approach where, counter-intuitively, feeble signals are amplified rather than overwhelmed by the addition of noise. This study introduces the 2D-frequency independent underdamped pinning stochastic resonance (2D-FI-UPSR) technique, which is a customized SR filter that enables identifying the frequencies of weak signals. To validate the feasibility of the proposed SR filter, an iPhone device is used to collect bridge acceleration data during normal traffic operation and the proposed 2D-FI-UPSR filter is used to process these data. The first four fundamental bridge frequencies are successfully identified from the iPhone data. In parallel to the iPhone, a highly sensitive wireless sensing network consists of 15 accelerometers (Silicon Designs accelerometers SDI-2012) is installed to validate the accuracy of the extracted frequencies. The measurement fidelity of the iPhone device is shown to be consistent with the wireless sensing network data with approximately 1% error in the first three bridge frequencies and 3% error in the fourth frequency. 
    more » « less
  3. This article reports an adaptive sensor bias observer and attitude observer operating directly on [Formula: see text] for true-north gyrocompass systems that utilize six-degree-of-freedom inertial measurement units (IMUs) with three-axis accelerometers and three-axis angular rate gyroscopes (without magnetometers). Most present-day low-cost robotic vehicles employ attitude estimation systems that employ microelectromechanical system (MEMS) magnetometers, angular rate gyros, and accelerometers to estimate magnetic attitude (roll, pitch, and magnetic heading) with limited heading accuracy. Present-day MEMS gyros are not sensitive enough to dynamically detect the Earth’s rotation, and thus cannot be used to estimate true-north geodetic heading. Relying on magnetic compasses can be problematic for vehicles that operate in environments with magnetic anomalies and those requiring high-accuracy navigation as the limited accuracy ([Formula: see text] error) of magnetic compasses is typically the largest error source in underwater vehicle navigation systems. Moreover, magnetic compasses need to undergo time-consuming recalibration for hard-iron and soft-iron errors every time a vehicle is reconfigured with a new instrument or other payload, as very frequently occurs on oceanographic marine vehicles. In contrast, the gyrocompass system reported herein utilizes fiber optic gyroscope (FOG) IMU angular rate gyro and MEMS accelerometer measurements (without magnetometers) to dynamically estimate the instrument’s time-varying true-north attitude (roll, pitch, and geodetic heading) in real-time while the instrument is subject to a priori unknown rotations. This gyrocompass system is immune to magnetic anomalies and does not require recalibration every time a new payload is added to or removed from the vehicle. Stability proofs for the reported bias and attitude observers, preliminary simulations, and a full-scale vehicle trial are reported that suggest the viability of the true-north gyrocompass system to provide dynamic real-time true-north heading, pitch, and roll utilizing a comparatively low-cost FOG IMU. 
    more » « less
  4. The balance of inverted pendulum on inclined surfaces is the precursor to their control in unstructured environments. Researchers have devised control algorithms with feedback from contact (encoders - placed at the pendulum joint) and non-contact (gyroscopes, tilt) sensors. We present feedback control of Inverted Pendulum Cart (IPC) on variable inclines using non-contact sensors and a modified error function. The system is in the state of equilibrium when it is not accelerating and not falling over (rotational equilibrium). This is achieved when the pendulum is aligned along the gravity vector. The control feedback is obtained from non-contact sensors comprising of a pair of accelerometers placed on the inverted pendulum and one on the cart. The proposed modified error function is composed of the dynamic (non-gravity) acceleration of the pendulum and the velocity of the cart. We prove that the system is in equilibrium when the modified error is zero. We present algorithm to calculate the dynamic acceleration and angle of the pendulum, and incline angle using accelerometer readings. Here, the cart velocity and acceleration are assumed to be proportional to the motor angular velocity and acceleration. Thereafter, we perform simulation using noisy sensors to illustrate the balance of IPC on surfaces with unknown inclination angles using PID feedback controller with saturated motor torque, including valley profile that resembles a downhill, flat and uphill combination. The successful control of the system using the proposed modified error function and accelerometer feedback argues for future design of controllers for unstructured and unknown environments using all-accelerometer feedback. 
    more » « less
  5. Abstract

    Castor is a system of six stars in which the two brighter objects, Castor A and B, revolve around each other every ∼450 yr and are both short-period spectroscopic binaries. They are attended by the more distant Castor C, which is also a binary. Here we report interferometric observations with the Center for High Angular Resolution Astronomy (CHARA) array that spatially resolve the companions in Castor A and B for the first time. We complement these observations with new radial velocity measurements of A and B spanning 30 yr, with the Hipparcos intermediate data, and with existing astrometric observations of the visual AB pair obtained over the past three centuries. We perform a joint orbital solution to solve simultaneously for the three-dimensional orbits of Castor A and B as well as the AB orbit. We find that they are far from being coplanar: the orbit of A is nearly at right angles (92°) relative to the wide orbit, and that of B is inclined about 59° compared to AB. We determine the dynamical masses of the four stars in Castor A and B to a precision better than 1%. We also determine the radii of the primary stars of both subsystems from their angular diameters measured with the CHARA array, and use them together with stellar evolution models to infer an age for the system of 290 Myr. The new knowledge of the orbits enables us to measure the slow motion of Castor C as well, which may assist future studies of the dynamical evolution of this remarkable sextuple system.

     
    more » « less