skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Towards Long-Form Video Understanding
Our world offers a never-ending stream of visual stimuli, yet today's vision systems only accurately recognize patterns within a few seconds. These systems understand the present, but fail to contextualize it in past or future events. In this paper, we study long-form video understanding. We introduce a framework for modeling long-form videos and develop evaluation protocols on large-scale datasets. We show that existing state-of-the-art short-term models are limited for long-form tasks. A novel object-centric transformer-based video recognition architecture performs significantly better on 7 diverse tasks. It also outperforms comparable state-of-the-art on the AVA dataset.  more » « less
Award ID(s):
2006820
PAR ID:
10298109
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE Conference on Computer Vision and Pattern Recognition
ISSN:
2163-6648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Our world offers a never-ending stream of visual stimuli, yet today’s vision systems only accurately recognize patterns within a few seconds. These systems understand the present, but fail to contextualize it in past or future events. In this paper, we study long-form video understanding. We introduce a framework for modeling long-form videos and develop evaluation protocols on large-scale datasets. We show that existing state-of-the-art short-term models are limited for long-form tasks. A novel object-centric transformer-based video recognition architecture performs significantly better on 7 diverse tasks. It also outperforms comparable state-of-the-art on the AVA dataset. 
    more » « less
  2. Recent advances in computer vision algorithms and video streaming technologies have facilitated the development of edge-server-based video analytics systems, enabling them to process sophisticated real-world tasks, such as traffic surveillance and workspace monitoring. Meanwhile, due to their omnidirectional recording capability, 360-degree cameras have been proposed to replace traditional cameras in video analytics systems to offer enhanced situational awareness. Yet, we found that providing an efficient 360-degree video analytics framework is a non-trivial task. Due to the higher resolution and geometric distortion in 360-degree videos, existing video analytics pipelines fail to meet the performance requirements for end-to-end latency and query accuracy. To address these challenges, we introduce the innovative ST-360 framework specifically designed for 360-degree video analytics. This framework features a spatial-temporal filtering algorithm that optimizes both data transmission and computational workloads. Evaluation of the ST-360 framework on a unique dataset of 360-degree first-responders videos reveals that it yields accurate query results with a 50% reduction in end-to-end latency compared to state-of-the-art methods. 
    more » « less
  3. null (Ed.)
    Deep learning now offers state-of-the-art accuracy for many prediction tasks. A form of deep learning called deep convolutional neural networks (CNNs) are especially popular on image, video, and time series data. Due to its high computational cost, CNN inference is often a bottleneck in analytics tasks on such data. Thus, a lot of work in the computer architecture, systems, and compilers communities study how to make CNN inference faster. In this work, we show that by elevating the abstraction level and re-imagining CNN inference as queries , we can bring to bear database-style query optimization techniques to improve CNN inference efficiency. We focus on tasks that perform CNN inference repeatedly on inputs that are only slightly different . We identify two popular CNN tasks with this behavior: occlusion-based explanations (OBE) and object recognition in videos (ORV). OBE is a popular method for “explaining” CNN predictions. It outputs a heatmap over the input to show which regions (e.g., image pixels) mattered most for a given prediction. It leads to many re-inference requests on locally modified inputs. ORV uses CNNs to identify and track objects across video frames. It also leads to many re-inference requests. We cast such tasks in a unified manner as a novel instance of the incremental view maintenance problem and create a comprehensive algebraic framework for incremental CNN inference that reduces computational costs. We produce materialized views of features produced inside a CNN and connect them with a novel multi-query optimization scheme for CNN re-inference. Finally, we also devise novel OBE-specific and ORV-specific approximate inference optimizations exploiting their semantics. We prototype our ideas in Python to create a tool called Krypton that supports both CPUs and GPUs. Experiments with real data and CNNs show that Krypton reduces runtimes by up to 5× (respectively, 35×) to produce exact (respectively, high-quality approximate) results without raising resource requirements. 
    more » « less
  4. Avidan, S. (Ed.)
    Despite the success of fully-supervised human skeleton sequence modeling, utilizing self-supervised pre-training for skeleton sequence representation learning has been an active field because acquiring task-specific skeleton annotations at large scales is difficult. Recent studies focus on learning video-level temporal and discriminative information using contrastive learning, but overlook the hierarchical spatial-temporal nature of human skeletons. Different from such superficial supervision at the video level, we propose a self-supervised hierarchical pre-training scheme incorporated into a hierarchical Transformer-based skeleton sequence encoder (Hi-TRS), to explicitly capture spatial, short-term, and long-term temporal dependencies at frame, clip, and video levels, respectively. To evaluate the proposed self-supervised pre-training scheme with Hi-TRS, we conduct extensive experiments covering three skeleton-based downstream tasks including action recognition, action detection, and motion prediction. Under both supervised and semi-supervised evaluation protocols, our method achieves the state-of-the-art performance. Additionally, we demonstrate that the prior knowledge learned by our model in the pre-training stage has strong transfer capability for different downstream tasks. 
    more » « less
  5. Recent advances in Neural Radiance Field (NeRF)-based methods have enabled high-fidelity novel view synthesis for video with dynamic elements. However, these methods often require expensive hardware, take days to process a second-long video and do not scale well to longer videos. We create an end-to-end pipeline for creating dynamic 3D video from a monocular video that can be run on consumer hardware in minutes per second of footage, not days. Our pipeline handles the estimation of the camera parameters, depth maps, 3D reconstruction of dynamic foreground and static background elements, and the rendering of the 3D video on a computer or VR headset. We use a state-of-the-art visual transformer model to estimate depth maps which we use to scale COLMAP poses and enable RGB-D fusion with estimated depth data. In our preliminary experiments, we rendered the output in a VR headset and visually compared the method against ground-truth datasets and state-of-the-art NeRF-based methods. 
    more » « less