Abstract Timely and accurate referral of end-stage heart failure patients for advanced therapies, including heart transplants and mechanical circulatory support, plays an important role in improving patient outcomes and saving costs. However, the decision-making process is complex, nuanced, and time-consuming, requiring cardiologists with specialized expertise and training in heart failure and transplantation. In this study, we propose two logistic tensor regression-based models to predict patients with heart failure warranting evaluation for advanced heart failure therapies using irregularly spaced sequential electronic health records at the population and individual levels. The clinical features were collected at the previous visit and the predictions were made at the very beginning of the subsequent visit. Patient-wise ten-fold cross-validation experiments were performed. Standard LTR achieved an average F1 score of 0.708, AUC of 0.903, and AUPRC of 0.836. Personalized LTR obtained an F1 score of 0.670, an AUC of 0.869 and an AUPRC of 0.839. The two models not only outperformed all other machine learning models to which they were compared but also improved the performance and robustness of the other models via weight transfer. The AUPRC scores of support vector machine, random forest, and Naive Bayes are improved by 8.87%, 7.24%, and 11.38%, respectively. The two models can evaluate the importance of clinical features associated with advanced therapy referral. The five most important medical codes, including chronic kidney disease, hypotension, pulmonary heart disease, mitral regurgitation, and atherosclerotic heart disease, were reviewed and validated with literature and by heart failure cardiologists. Our proposed models effectively utilize EHRs for potential advanced therapies necessity in heart failure patients while explaining the importance of comorbidities and other clinical events. The information learned from trained model training could offer further insight into risk factors contributing to the progression of heart failure at both the population and individual levels.
more »
« less
A Machine Learning Methodology for Identification and Triage of Heart Failure Exacerbations
Abstract Inadequate at-home management and self-awareness of heart failure (HF) exacerbations are known to be leading causes of the greater than 1 million estimated HF-related hospitalizations in the USA alone. Most current at-home HF management protocols include paper guidelines or exploratory health applications that lack rigor and validation at the level of the individual patient. We report on a novel triage methodology that uses machine learning predictions for real-time detection and assessment of exacerbations. Medical specialist opinions on statistically and clinically comprehensive, simulated patient cases were used to train and validate prediction algorithms. Model performance was assessed by comparison to physician panel consensus in a representative, out-of-sample validation set of 100 vignettes. Algorithm prediction accuracy and safety indicators surpassed all individual specialists in identifying consensus opinion on existence/severity of exacerbations and appropriate treatment response. The algorithms also scored the highest sensitivity, specificity, and PPV when assessing the need for emergency care. Lay summary Here we develop a machine-learning approach for providing real-time decision support to adults diagnosed with congestive heart failure. The algorithm achieves higher exacerbation and triage classification performance than any individual physician when compared to physician consensus opinion. Graphical abstract
more »
« less
- Award ID(s):
- 1950994
- PAR ID:
- 10298111
- Date Published:
- Journal Name:
- Journal of Cardiovascular Translational Research
- ISSN:
- 1937-5387
- Page Range / eLocation ID:
- 1-13
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Heart failure (HF) is a major cause of morbidity and mortality, and one of the leading causes of hospitalization. Early detection of HF symptoms and pro-active management may reduce adverse events. Passive accelerometer data from smartphones may reflect behavioral and physiologic changes due to HF and thus could enable prediction of HF decompensation.more » « less
-
Background:Despite recent advances, patients with heart failure (HF) often experience repeat hospitalizations and worsening clinical trajectories from inadequate decongestion. Evidence-based approaches for optimizing interventions in the acute hospital setting for patients with decompensated HF are needed. We evaluated whether machine learning (ML) models can accurately predict next-day levels for decongestion surrogates in hospitalized HF patients. Hypothesis:ML can accurately predict body weight, hematocrit, creatinine, and potassium values in the next 24 hours in hospitalized HF patients. Methods:We utilized national Veterans Affairs (VA) databases to study all patients admitted with HF from January 2014 to July 2022. Records including at least one value for at least one biomarker of interest (body weight, hematocrit, creatinine, and potassium) were included. Patients were randomly split into training (80%), validation (10%), and test (10%) datasets. We trained a recurrent neural network to predict each biomarker’s value on admission day n+1 using data until day n, simulating a scenario where a clinician monitors response to treatment (e.g., diuresis) over a 24-hour cycle. The model that performed best on the validation set was evaluated on the test set. The R2, mean absolute error (MAE), and feature importance were determined. Results:We identified 589,114 admissions involving 124,163 unique patients. The mean (SD) age on admission was 72 (10) years; 98% were male, 69% were white, and 25% were Black. The performance (R2, MAE) for each biomarker model was as follows: body weight (0.94, 6.15 lb.), creatinine (0.92, 0.21 mg/dL), hematocrit (0.86, 1.7%), and potassium (0.53, 0.27 mmol/L). The top predictive features across all models were intravenous or oral diuretic use, patient age, and diastolic blood pressure. The predicted 24-hour change in each biomarker based on total daily diuretic dose for five representative patients is demonstrated in the Figure. Conclusions:ML can accurately predict the 24-hour body weight, hematocrit, creatinine, and potassium values in hospitalized HF patients, suggesting the potential for AI to guide acute in-hospital management.more » « less
-
null (Ed.)Knowing when a machine learning system is not confident about its prediction is crucial in medical domains where safety is critical. Ideally, a machine learning algorithm should make a prediction only when it is highly certain about its competency, and refer the case to physicians otherwise. In this paper, we investigate how Bayesian deep learning can improve the performance of the machine–physician team in the skin lesion classification task. We used the publicly available HAM10000 dataset, which includes samples from seven common skin lesion categories: Melanoma (MEL), Melanocytic Nevi (NV), Basal Cell Carcinoma (BCC), Actinic Keratoses and Intraepithelial Carcinoma (AKIEC), Benign Keratosis (BKL), Dermatofibroma (DF), and Vascular (VASC) lesions. Our experimental results show that Bayesian deep networks can boost the diagnostic performance of the standard DenseNet-169 model from 81.35% to 83.59% without incurring additional parameters or heavy computation. More importantly, a hybrid physician–machine workflow reaches a classification accuracy of 90 % while only referring 35 % of the cases to physicians. The findings are expected to generalize to other medical diagnosis applications. We believe that the availability of risk-aware machine learning methods will enable a wider adoption of machine learning technology in clinical settings.more » « less
-
The purpose of this study is to utilize machine learning techniques to identify intraoperative parameters that contribute significantly to the development of postoperative renal failure following CABG and predict postoperative renal failure based on these parameters. Continuous intraoperative data were gathered retrospectively from the anaesthesia record and included hemodynamic information such as heart rate, arterial blood pressure, central venous pressure, pulmonary artery pressure, as well as additional information such as ventilator settings, temperature, and medication or fluid administration. Multiple machine learning algorithms were tested with this dataset using 10 fold cross validation with stratified folds and their classification performance was measured using area under the receiver operating characteristic curves (ROC AUC). Continuous intraoperative data gathered from patients undergoing CABG revealed potential targets for early, intraoperative intervention to prevent the development of postoperative renal failure.more » « less