skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: N-acetylcysteine inhibits thrombosis in a murine model of myeloproliferative neoplasm
Abstract Thrombosis is a major cause of mortality in patients with myeloproliferative neoplasms (MPNs), though there is currently little to offer patients with MPN beyond aspirin and cytoreductive therapies such as hydroxyurea for primary prevention. Thrombogenesis in MPN involves multiple cellular mechanisms, including platelet activation and neutrophil-extracellular trap formation; therefore, an antithrombotic agent that targets one or more of these processes would be of therapeutic benefit in MPN. Here, we treated the JAK2V617F knockin mouse model of polycythemia vera with N-acetylcysteine (NAC), a sulfhydryl-containing compound with broad effects on glutathione replenishment, free radical scavenging, and reducing disulfide bonds, to investigate its antithrombotic effects in the context of MPN. Strikingly, NAC treatment extended the lifespan of JAK2V617F mice without impacting blood counts or splenomegaly. Using an acute pulmonary thrombosis model in vivo, we found that NAC reduced thrombus formation to a similar extent as the irreversible platelet inhibitor aspirin. In vitro analysis of platelet activation revealed that NAC reduced thrombin-induced platelet-leukocyte aggregate formation in JAK2V617F mice. Furthermore, NAC reduced neutrophil extracellular trap formation in primary human neutrophils from patients with MPN as well as healthy controls. These results provide evidence that N-acetylcysteine inhibits thrombosis in JAK2V617F mice and provide a pre-clinical rationale for investigating NAC as a therapeutic to reduce thrombotic risk in MPN.  more » « less
Award ID(s):
1936833
PAR ID:
10298254
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Blood Advances
Volume:
4
Issue:
2
ISSN:
2473-9529
Page Range / eLocation ID:
312 to 321
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract von Willebrand factor (VWF) is essential for the induction of arterial thrombosis. In this study, we investigated the critical role of platelet VWF in occlusive thrombosis formation at high shear in mice that do not express platelet VWF (Nbeal2−/−). Using in silico modeling, in vitro high-shear microfluidics, and an in vivo Folts model of arterial thrombosis we reproduced the platelet dynamics that occur under pathological flow in a stenosed vessel. Computational fluid dynamics (CFDs) simulated local hemodynamics in a stenosis based on arterial geometries. The model predicted shear rates, time course of platelet adhesion, and time to occlusion. These predictions were validated in vitro and in vivo. Occlusive thrombosis developed in wild-type control mice that had normal levels of plasma VWF and platelet VWF in vitro and in vivo. Occlusive thrombosis did not form in the Nbeal2−/− mice that had normal plasma VWF and an absence of platelet VWF. Occlusive thrombosis was corrected in Nbeal2−/− microfluidic assays by the addition of exogenous normal platelets with VWF. Combining model and experimental data, we demonstrated the necessary requirement of platelet VWF in α-granules in forming an occlusive thrombus under high shear. These results could inspire new pharmacological targets specific to pathological conditions and prevent arterial thrombosis. 
    more » « less
  2. Abstract Sickle cell disease (SCD) is the most prevalent inherited blood disorder in the world. But the clinical manifestations of the disease are highly variable. In particular, it is currently difficult to predict the adverse outcomes within patients with SCD, such as, vasculopathy, thrombosis, and stroke. Therefore, for most effective and timely interventions, a predictive analytic strategy is desirable. In this study, we evaluate the endothelial and prothrombotic characteristics of blood outgrowth endothelial cells (BOECs) generated from blood samples of SCD patients with known differences in clinical severity of the disease. We present a method to evaluate patient‐specific vaso‐occlusive risk by combining novel RNA‐seq and organ‐on‐chip approaches. Through differential gene expression (DGE) and pathway analysis we find that BOECs from SCD patients exhibit an activated state through cell adhesion molecule (CAM) and cytokine signaling pathways among many others. In agreement with clinical symptoms of patients, DGE analyses reveal that patient with severe SCD had a greater extent of endothelial activation compared to patient with milder symptoms. This difference is confirmed by performing qRT‐PCR of endothelial adhesion markers like E‐selectin, P‐selectin, tissue factor, and Von Willebrand factor. Finally, the differential regulation of the proinflammatory phenotype is confirmed through platelet adhesion readouts in our BOEC vessel‐chip. Taken together, we hypothesize that these easily blood‐derived endothelial cells evaluated through RNA‐seq and organ‐on‐chips may serve as a biotechnique to predict vaso‐occlusive episodes in SCD patients and will ultimately allow better therapeutic interventions. 
    more » « less
  3. N -Acetylcysteine (NAC) has health benefits attributed to its antioxidant properties and disulfide bond cleavage ability. Unfortunately, solutions of NAC are acidic with an undesirable taste and an unpleasant aftertaste. A method for slowing NAC release in water was developed using a solid phase wax coating. A coating of natural waxes, using food grade corn oil as the solvent and surfactants to facilitate the wax coating on the particles was used to decrease the solubility of NAC powder, crystals, and granules in water. A high NAC loading, between 55 and 91% for NAC granules and NAC crystals, was achieved as measured using LC-MS. The NAC wax-coated particles were fully characterized, and microscopy and SEM images revealed the shape, morphology, and size of the particles. Conductometry was used to study NAC release profile in water from wax-coated particles and the results indicate that solid phase wax coatings slowed the release of NAC into water. 
    more » « less
  4. null (Ed.)
    Abstract Background Evasion from programmed cell death is a hallmark of cancer and can be achieved in cancer cells by overexpression of inhibitor of apoptosis proteins (IAPs). Second mitochondria-derived activator of caspases (SMAC) directly bind to IAPs and promote apoptosis; thus, SMAC mimetics have been investigated in a variety of cancer types. particularly in diseases with high inflammation and NFĸB activation. Given that elevated TNFα levels and NFĸB activation is a characteristic feature of myeloproliferative neoplasms (MPN), we investigated the effect of the SMAC mimetic LCL-161 on MPN cell survival in vitro and disease development in vivo. Methods To investigate the effect of the SMAC mimetic LCL-161 in vitro, we utilized murine and human cell lines to perform cell viability assays as well as primary bone marrow from mice or humans with JAK2 V617F –driven MPN to interrogate myeloid colony formation. To elucidate the effect of the SMAC mimetic LCL-161 in vivo, we treated a JAK2 V617F –driven mouse model of MPN with LCL-161 then assessed blood counts, splenomegaly, and myelofibrosis. Results We found that JAK2 V617F -mutated cells are hypersensitive to the SMAC mimetic LCL-161 in the absence of exogenous TNFα. JAK2 kinase activity and NFĸB activation is required for JAK2 V617F -mediated sensitivity to LCL-161, as JAK or NFĸB inhibitors diminished the differential sensitivity of JAK2 V617F mutant cells to IAP inhibition. Finally, LCL-161 reduces splenomegaly and may reduce fibrosis in a mouse model of JAK2 V617F -driven MPN. Conclusion LCL-161 may be therapeutically useful in MPN, in particular when exogenous TNFα signaling is blocked. NFĸB activation is a characteristic feature of JAK2 V617F mutant cells and this sensitizes them to SMAC mimetic induced killing even in the absence of TNFα. However, when exogenous TNFα is added, NFĸB is activated in both mutant and wild-type cells, abolishing the differential sensitivity. Moreover, JAK kinase activity is required for the differential sensitivity of JAK2 V617F mutant cells, suggesting that the addition of JAK2 inhibitors to SMAC mimetics would detract from the ability of SMAC mimetics to selectively target JAK2 V617F mutant cells. Instead, combination therapy with other agents that reduce inflammatory cytokines but preserve JAK2 signaling in mutant cells may be a more beneficial combination therapy in MPN. 
    more » « less
  5. Philadelphia-negative myeloproliferative neoplasms (MPNs) occur when there is over-production of myeloid cells stemming from hematopoietic stem cells with constitutive activation of JAK/STAT signaling, with JAK2V617F being the most commonly occurring somatic driver mutation. Chronic inflammation is a hallmark feature of MPNs and it is now evident that inflammation is not only a symptom of MPN but can also provoke development and precipitate progression of disease. Herein we have considered major MPN driver mutation independent host, lifestyle, and environmental factors in the pathogenesis of MPN based upon epidemiological and experimental data. In addition to the traditional risk factors such as advanced age, there is evidence to indicate that inflammatory stimuli such as smoking can promote and drive MPN clone emergence and expansion. Diet induced inflammation could also play a role in MPN clonal expansion. Recognition of factors associated with MPN development support lifestyle modifications as an emerging therapeutic tool to restrain inflammation and diminish MPN progression. 
    more » « less