skip to main content


Title: Drivers’ Spatio-Temporal Attentional Distributions Are Influenced by Vehicle Dynamics and Displayed Point of View
Objective The aim of this study is to measure drivers’ attention to preview and their velocity and acceleration tracking error to evaluate two- and three-dimensional displays for following a winding roadway. Background Display perturbation techniques and Fourier analysis of steering movements can be used to infer drivers’ spatio-temporal distribution of attention to preview. Fourier analysis of tracking error time histories provides measures of position, velocity, and acceleration error. Method Participants tracked a winding roadway with 1 s of preview in low-fidelity driving simulations. Position and rate-aided vehicle dynamics were paired with top-down and windshield displays of the roadway. Results For both vehicle dynamics, tracking was smoother with the windshield display. This display emphasizes nearer preview positions and has a closer correspondence to the control-theoretic optimal attentional distributions for these tasks than the top-down display. This correspondence is interpreted as a form of stimulus–response compatibility. The position error and attentional signal-to-noise ratios did not differ between the two displays with position control, but with more complex rate-aided control much higher position error and much lower attentional signal-to-noise ratios occurred with the top-down display. Conclusion Display-driven influences on the distribution of attention may facilitate tracking with preview when they are similar to optimal attentional distributions derived from control theory. Application Display perturbation techniques can be used to assess spatially distributed attention to evaluate displays and secondary tasks in the context of driving. This methodology can supplement eye movement measurements to determine what information is guiding drivers’ actions.  more » « less
Award ID(s):
1901632
NSF-PAR ID:
10298384
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Human Factors: The Journal of the Human Factors and Ergonomics Society
Volume:
63
Issue:
4
ISSN:
0018-7208
Page Range / eLocation ID:
578 to 591
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Objective We controlled participants’ glance behavior while using head-down displays (HDDs) and head-up displays (HUDs) to isolate driving behavioral changes due to use of different display types across different driving environments. Background Recently, HUD technology has been incorporated into vehicles, allowing drivers to, in theory, gather display information without moving their eyes away from the road. Previous studies comparing the impact of HUDs with traditional displays on human performance show differences in both drivers’ visual attention and driving performance. Yet no studies have isolated glance from driving behaviors, which limits our ability to understand the cause of these differences and resulting impact on display design. Method We developed a novel method to control visual attention in a driving simulator. Twenty experienced drivers sustained visual attention to in-vehicle HDDs and HUDs while driving in both a simple straight and empty roadway environment and a more realistic driving environment that included traffic and turns. Results In the realistic environment, but not the simpler environment, we found evidence of differing driving behaviors between display conditions, even though participants’ glance behavior was similar. Conclusion Thus, the assumption that visual attention can be evaluated in the same way for different types of vehicle displays may be inaccurate. Differences between driving environments bring the validity of testing HUDs using simplistic driving environments into question. Application As we move toward the integration of HUD user interfaces into vehicles, it is important that we develop new, sensitive assessment methods to ensure HUD interfaces are indeed safe for driving. 
    more » « less
  2. Due to the lack of information, current vehicle control systems generally assume that the road friction conditions ahead of a vehicle are unchanged relative to those at the vehicle's current position. This can result in dangerous situations if the friction is suddenly decreasing from the current situation, or overly conservative driving styles if the friction of the current situation is worse than the roadway ahead. However, with connectivity either to other vehicles, infrastructure, or cloud services, future vehicles may have access to upcoming roadway information; this is particularly valuable for planning velocity trajectories that consider the friction and geometry in the road path ahead. This paper introduces a method for planning longitudinal speed profiles for Connected and Autonomous Vehicles (CAVs) that have previewed information about path geometry and friction conditions. The novelty of this approach is to explicitly include consideration of the friction ellipse available along the intended path. The paper derives an analytical solution for certain preview cases that upper-bounds the allowable vehicle velocity profile while preventing departure from the friction ellipse. The results further define the relationship between a lower bound on friction, the path geometry, and minimum friction preview distance. This relationship is used to ensure the vehicle has sufficient time to take action for upcoming hazardous situations. The efficacy of the algorithm is demonstrated through an application case where a vehicle navigates a curving road with changing friction conditions, with results showing that, with sufficient preview, the vehicle could anticipate allowable and stable path keeping speed. 
    more » « less
  3. Background: Drivers gather most of the information they need to drive by looking at the world around them and at visual displays within the vehicle. Navigation systems automate the way drivers navigate. In using these systems, drivers offload both tactical (route following) and strategic aspects (route planning) of navigational tasks to the automated SatNav system, freeing up cognitive and attentional resources that can be used in other tasks (Burnett, 2009). Despite the potential benefits and opportunities that navigation systems provide, their use can also be problematic. For example, research suggests that drivers using SatNav do not develop as much environmental spatial knowledge as drivers using paper maps (Waters & Winter, 2011; Parush, Ahuvia, & Erev, 2007). With recent growth and advances of augmented reality (AR) head-up displays (HUDs), there are new opportunities to display navigation information directly within a driver’s forward field of view, allowing them to gather information needed to navigate without looking away from the road. While the technology is promising, the nuances of interface design and its impacts on drivers must be further understood before AR can be widely and safely incorporated into vehicles. Specifically, an impact that warrants investigation is the role of AR HUDS in spatial knowledge acquisition while driving. Acquiring high levels of spatial knowledge is crucial for navigation tasks because individuals who have greater levels of spatial knowledge acquisition are more capable of navigating based on their own internal knowledge (Bolton, Burnett, & Large, 2015). Moreover, the ability to develop an accurate and comprehensive cognitive map acts as a social function in which individuals are able to navigate for others, provide verbal directions and sketch direction maps (Hill, 1987). Given these points, the relationship between spatial knowledge acquisition and novel technologies such as AR HUDs in driving is a relevant topic for investigation. Objectives: This work explored whether providing conformal AR navigational cues improves spatial knowledge acquisition (as compared to traditional HUD visual cues) to assess the plausibility and justification for investment in generating larger FOV AR HUDs with potentially multiple focal planes. Methods: This study employed a 2x2 between-subjects design in which twenty-four participants were counterbalanced by gender. We used a fixed base, medium fidelity driving simulator for where participants drove while navigating with one of two possible HUD interface designs: a world-relative arrow post sign and a screen-relative traditional arrow. During the 10-15 minute drive, participants drove the route and were encouraged to verbally share feedback as they proceeded. After the drive, participants completed a NASA-TLX questionnaire to record their perceived workload. We measured spatial knowledge at two levels: landmark and route knowledge. Landmark knowledge was assessed using an iconic recognition task, while route knowledge was assessed using a scene ordering task. After completion of the study, individuals signed a post-trial consent form and were compensated $10 for their time. Results: NASA-TLX performance subscale ratings revealed that participants felt that they performed better during the world-relative condition but at a higher rate of perceived workload. However, in terms of perceived workload, results suggest there is no significant difference between interface design conditions. Landmark knowledge results suggest that the mean number of remembered scenes among both conditions is statistically similar, indicating participants using both interface designs remembered the same proportion of on-route scenes. Deviance analysis show that only maneuver direction had an influence on landmark knowledge testing performance. Route knowledge results suggest that the proportion of scenes on-route which were correctly sequenced by participants is similar under both conditions. Finally, participants exhibited poorer performance in the route knowledge task as compared to landmark knowledge task (independent of HUD interface design). Conclusions: This study described a driving simulator study which evaluated the head-up provision of two types of AR navigation interface designs. The world-relative condition placed an artificial post sign at the corner of an approaching intersection containing a real landmark. The screen-relative condition displayed turn directions using a screen-fixed traditional arrow located directly ahead of the participant on the right or left side on the HUD. Overall results of this initial study provide evidence that the use of both screen-relative and world-relative AR head-up display interfaces have similar impact on spatial knowledge acquisition and perceived workload while driving. These results contrast a common perspective in the AR community that conformal, world-relative graphics are inherently more effective. This study instead suggests that simple, screen-fixed designs may indeed be effective in certain contexts. 
    more » « less
  4. Objective

    This study examined the impact of monitoring instructions when using an automated driving system (ADS) and road obstructions on post take-over performance in near-miss scenarios.

    Background

    Past research indicates partial ADS reduces the driver’s situation awareness and degrades post take-over performance. Connected vehicle technology may alert drivers to impending hazards in time to safely avoid near-miss events.

    Method

    Forty-eight licensed drivers using ADS were randomly assigned to either the active driving or passive driving condition. Participants navigated eight scenarios with or without a visual obstruction in a distributed driving simulator. The experimenter drove the other simulated vehicle to manually cause near-miss events. Participants’ mean longitudinal velocity, standard deviation of longitudinal velocity, and mean longitudinal acceleration were measured.

    Results

    Participants in passive ADS group showed greater, and more variable, deceleration rates than those in the active ADS group. Despite a reliable audiovisual warning, participants failed to slow down in the red-light running scenario when the conflict vehicle was occluded. Participant’s trust in the automated driving system did not vary between the beginning and end of the experiment.

    Conclusion

    Drivers interacting with ADS in a passive manner may continue to show increased and more variable deceleration rates in near-miss scenarios even with reliable connected vehicle technology. Future research may focus on interactive effects of automated and connected driving technologies on drivers’ ability to anticipate and safely navigate near-miss scenarios.

    Application

    Designers of automated and connected vehicle technologies may consider different timing and types of cues to inform the drivers of imminent hazard in high-risk scenarios for near-miss events.

     
    more » « less
  5. Vehicles are highly likely to lose control unexpectedly when encountering unforeseen hazardous road friction conditions. With automation and connectivity increasingly available to assist drivers, vehicle performance can significantly benefit from a road friction preview map, particularly to identify where and how friction ahead of a vehicle may be suddenly decreasing. Although many techniques enable the vehicle to measure the local friction as driving upon a surface, these encounters limit the ability of a vehicle to slow down before a low-friction surface is already encountered. Using the connectivity of connected and autonomous vehicles (CAVs), a global road friction map can be created by aggregating information from vehicles. A challenge in the creation of these global friction maps is the very large quantity of data involved, and that the measurements populating the map are generated by vehicle trajectories that do not uniformly cover the grid. This paper presents a road friction map generation strategy that aggregates the measured road-tire friction coefficients along the individual trajectories of CAVs into a road surface grid. And through clustering the friction grids further, an insight of this work is that the friction map can be represented compactly by rectangular boxes defined by a pair of corner coordinates in space and a friction value within the box. To demonstrate the method, a simulation is presented that integrates traffic simulations, vehicle dynamics and on-vehicle friction estimators, and a highway road surface where friction is changing in space, particularly over a bridge segment. The experimental results indicate that the road friction distribution can be measured effectively by collecting and aggregating the friction data from CAVs. By defining a cloud-based data sharing method for the networks of CAVs, this road friction mapping strategy provides great potential for improving CAVs' control performance and stability via database-mediated feedback systems. 
    more » « less