skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Summertime stationary waves integrate tropical and extratropical impacts on tropical cyclone activity
Tropical cyclones (TC) are one of the most severe storm systems on Earth and cause significant loss of life and property upon landfall in coastal areas. A better understanding of their variability mechanisms will help improve the TC seasonal prediction skill and mitigate the destructive impacts of the storms. Early studies focused primarily on tropical processes in regulating the variability of TC activity, while recent studies suggest also some long-range impacts of extratropical processes, such as lateral transport of dry air and potential vorticity by large-scale waves. Here we show that stationary waves in the Northern Hemisphere integrate tropical and extratropical impacts on TC activity in July through October. In particular, tropical upper-tropospheric troughs (TUTTs), as part of the summertime stationary waves, are associated with the variability of large-scale environmental conditions in the tropical North Atlantic and North Pacific and significantly correlated to the variability of TC activity in these basins. TUTTs are subject to the modulation of diabatic heating in various regions and are the preferred locations for extratropical Rossby wave breaking (RWB). A strong TUTT in a basin is associated with enhanced RWB and tropical−extratropical stirring in that basin, and the resultant changes in the tropical atmospheric conditions modulate TC activity. In addition, the anticorrelation of TUTTs between the North Atlantic and North Pacific makes the TC activity indices over the two basins compensate each other, rendering the global TC activity less variable than otherwise would be the case if TUTTs were independent.  more » « less
Award ID(s):
1813611
PAR ID:
10298425
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
37
ISSN:
0027-8424
Page Range / eLocation ID:
22720 to 22726
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The interannual variability of summertime subtropical stationary waves, the forcing mechanisms, and their connections to regional tropical cyclone (TC) variability are investigated in this study. Two indices are identified to characterize the interannual variability of subtropical stationary waves: the longitudinal displacement of the zonal wavenumber-1 component (WN1) and the intensity change of the zonal wavenumber-2 component (WN2). These two indices are strongly anticorrelated and offer simple metrics to depict the interannual variability of subtropical stationary waves. Furthermore, the longitudinal displacement of the WN1 is significantly correlated with the variability of TC activity over the North Pacific and North Atlantic, and its influences on regional TC activity can be explained by variations in vertical wind shear, tropospheric humidity, and the frequency of Rossby wave breaking. The subtropical stationary waves are strongly related to precipitation anomalies over different oceanic regions, implying the possible impacts of low-frequency climate modes. Semi-idealized experiments using the Community Earth System Model version 2 (CESM2) show that the longitude of the WN1 is strongly modulated by ENSO, as well as SST anomalies over the Atlantic main development region and the central North Pacific. Further diagnosis using a baroclinic stationary wave model demonstrates the dominant role of diabatic heating in driving the interannual variability of stationary waves and confirms the impacts of different air–sea coupled modes on subtropical stationary waves. Overall, subtropical stationary waves provide a unified framework to understand the impacts of various forcing agents, such as ENSO, the Atlantic meridional mode, and extratropical Rossby wave breaking, on TC activity over the North Atlantic and North Pacific. 
    more » « less
  2. Abstract Machine learning (ML) models are successful with weather forecasting and have shown progress in climate simulations, yet leveraging them for useful climate predictions needs exploration. Here we show this feasibility using Neural General Circulation Model (NeuralGCM), a hybrid ML-physics atmospheric model developed by Google, for seasonal predictions of large-scale atmospheric variability and Northern Hemisphere tropical cyclone (TC) activity. Inspired by physical model studies, we simplify boundary conditions, assuming sea surface temperature (SST) and sea ice follow their climatological cycle but persist anomalies present at the initialization time. With such forcings, NeuralGCM can generate 100 simulation days in ~8 minutes with a single Graphics Processing Unit (GPU), while simulating realistic atmospheric circulation and TC climatology patterns. This configuration yields useful seasonal predictions (July–November) for the tropical atmosphere and various TC activity metrics. Notably, the predicted and observed TC frequency in the North Atlantic and East Pacific basins are significantly correlated during 1990–2023 (r=~0.7), suggesting prediction skill comparable to existing physical GCMs. Despite challenges associated with model resolution and simplified boundary forcings, the model-predicted interannual variations demonstrate significant correlations with the observation, including the sub-basin TC tracks (p<0.1) and basin-wide accumulated cyclone energy (p<0.01) of the North Atlantic and North Pacific basins. These findings highlight the promise of leveraging ML models with physical insights to model TC risks and deliver seamless weather-climate predictions. 
    more » « less
  3. Tropical easterly waves (TEWs) are westward-moving waves often within trade winds but occur ubiquitously in the tropics and play a significant role in the genesis of tropical cyclones (TCs). They are well-known as primary precursors of TCs in the Atlantic, yet their global relationship with TCs has been less explored. This study, for the first time, presents the global distribution of TEW activity using a combined thermodynamic and dynamic framework based on 6-hourly Outgoing Longwave Radiation and curvature vorticity. We then demonstrate that TEWs play a dominant role in approximately 22–71% of global TC genesis, with their highest impacts in the North Atlantic (71%) and Western Pacific (54%). We further identify that TEWs, in their general coupling with TC genesis dynamics, act to intensify TC convection and vorticity in all TC main development regions, albeit the vorticity enhancement is relatively weaker in the North Atlantic. To understand the cross-basin differences in this general TEW-TC relationship, we further investigated background conditions for TC genesis in each basin and found an additional dry environment constraint in the Atlantic TC genesis, yet still delineating the critical role of TEWs in TC development. 
    more » « less
  4. Abstract Atlantic tropical cyclones (TCs) can cause significant societal and economic impacts, as 2019's Dorian serves to remind us of these storms' destructiveness. Decades of effort to understand and predict Atlantic TC activity have improved seasonal forecast skill, but large uncertainties still remain, in part due to an incomplete understanding of the drivers of TC variability. Here we identify an association between the East Asian Subtropical Jet Stream (EASJ) during July–October and the frequency of Atlantic TCs (wind speed ≥34 knot) and hurricanes (wind speed ≥64 knot) during August–November based on observations for 1980–2018. This strong association is tied to the impacts of EASJ on a stationary Rossby wave train emanating from East Asia and the tropical Pacific to the North Atlantic, leading to changes in vertical wind shear in the Atlantic Main Development Region (80–20°W, 10–20°N). 
    more » « less
  5. Abstract During boreal winter, the climatological stationary wave plays a key role in the poleward transport of heat in mid- and high latitudes. Latent heating is an important driver of boreal-winter stationary waves. In this study, the temporal relationship between tropical and extratropical heating and transient–stationary wave interference is investigated by performing observational data analyses and idealized model experiments. In line with stationary wave theory, the observed heating anomaly fields during constructive interference events have a spatial structure that reinforces the zonal asymmetry of the climatological heating field. The observational analysis shows that about 10 days prior to constructive interference events, tropical heating anomalies are established, and within 1 week North Pacific and then North Atlantic heating anomalies follow. This result suggests that constructive interference involves a heating–circulation relay: tropical latent heating drives circulation anomalies that transport moisture in such a manner as to increase latent heating in the North Pacific; circulation anomalies driven by this North Pacific heating similarly lead to enhanced latent heating in the North Atlantic. This heating–circulation relay picture is supported by initial-value model calculations in which the observed heating anomalies are used to drive model circulations. Our results also show that the constructive interference driven by both tropical and extratropical diabatic heating generates a relatively large-amplitude wave in high latitudes and leads to particularly prolonged Arctic warming episodes, whereas when both the tropical and extratropical diabatic heating are weak, constructive interference is confined to midlatitudes and does not lead to Arctic warming. 
    more » « less