skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Gene Ontology resource: enriching a GOld mine
Abstract The Gene Ontology Consortium (GOC) provides the most comprehensive resource currently available for computable knowledge regarding the functions of genes and gene products. Here, we report the advances of the consortium over the past two years. The new GO-CAM annotation framework was notably improved, and we formalized the model with a computational schema to check and validate the rapidly increasing repository of 2838 GO-CAMs. In addition, we describe the impacts of several collaborations to refine GO and report a 10% increase in the number of GO annotations, a 25% increase in annotated gene products, and over 9,400 new scientific articles annotated. As the project matures, we continue our efforts to review older annotations in light of newer findings, and, to maintain consistency with other ontologies. As a result, 20 000 annotations derived from experimental data were reviewed, corresponding to 2.5% of experimental GO annotations. The website (http://geneontology.org) was redesigned for quick access to documentation, downloads and tools. To maintain an accurate resource and support traceability and reproducibility, we have made available a historical archive covering the past 15 years of GO data with a consistent format and file structure for both the ontology and annotations.  more » « less
Award ID(s):
2039324
PAR ID:
10298655
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Nucleic Acids Research
Volume:
49
Issue:
D1
ISSN:
0305-1048
Page Range / eLocation ID:
D325 to D334
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Gene Ontology (GO) knowledgebase (http://geneontology.org) is a comprehensive resource concerning the functions of genes and gene products (proteins and noncoding RNAs). GO annotations cover genes from organisms across the tree of life as well as viruses, though most gene function knowledge currently derives from experiments carried out in a relatively small number of model organisms. Here, we provide an updated overview of the GO knowledgebase, as well as the efforts of the broad, international consortium of scientists that develops, maintains, and updates the GO knowledgebase. The GO knowledgebase consists of three components: (1) the GO—a computational knowledge structure describing the functional characteristics of genes; (2) GO annotations—evidence-supported statements asserting that a specific gene product has a particular functional characteristic; and (3) GO Causal Activity Models (GO-CAMs)—mechanistic models of molecular “pathways” (GO biological processes) created by linking multiple GO annotations using defined relations. Each of these components is continually expanded, revised, and updated in response to newly published discoveries and receives extensive QA checks, reviews, and user feedback. For each of these components, we provide a description of the current contents, recent developments to keep the knowledgebase up to date with new discoveries, and guidance on how users can best make use of the data that we provide. We conclude with future directions for the project. 
    more » « less
  2. null (Ed.)
    Abstract PANTHER (Protein Analysis Through Evolutionary Relationships, http://www.pantherdb.org) is a resource for the evolutionary and functional classification of protein-coding genes from all domains of life. The evolutionary classification is based on a library of over 15,000 phylogenetic trees, and the functional classifications include Gene Ontology terms and pathways. Here, we analyze the current coverage of genes from genomes in different taxonomic groups, so that users can better understand what to expect when analyzing a gene list using PANTHER tools. We also describe extensive improvements to PANTHER made in the past two years. The PANTHER Protein Class ontology has been completely refactored, and 6101 PANTHER families have been manually assigned to a Protein Class, providing a high level classification of protein families and their genes. Users can access the TreeGrafter tool to add their own protein sequences to the reference phylogenetic trees in PANTHER, to infer evolutionary context as well as fine-grained annotations. We have added human enhancer-gene links that associate non-coding regions with the annotated human genes in PANTHER. We have also expanded the available services for programmatic access to PANTHER tools and data via application programming interfaces (APIs). Other improvements include additional plant genomes and an updated PANTHER GO-slim. 
    more » « less
  3. The Gene Ontology (GO) is a comprehensive resource of computable knowledge regarding the functions of genes and gene products. As such, it is extensively used by the biomedical research community for the analysis of -omics and related data. Our continued focus is on improving the quality and utility of the GO resources, and we welcome and encourage input from researchers in all areas of biology. In this update, we summarize the current contents of the GO knowledgebase, and present several new features and improvements that have been made to the ontology, the annotations and the tools. Among the highlights are 1) developments that facilitate access to, and application of, the GO knowledgebase, and 2) extensions to the resource as well as increasing support for descriptions of causal models of biological systems and network biology. To learn more, visit http://geneontology.org/. 
    more » « less
  4. Ouellette, Francis (Ed.)
    Experimental data about gene functions curated from the primary literature have enormous value for research scientists in understanding biology. Using the Gene Ontology (GO), manual curation by experts has provided an important resource for studying gene function, especially within model organisms. Unprecedented expansion of the scientific literature and validation of the predicted proteins have increased both data value and the challenges of keeping pace. Capturing literature-based functional annotations is limited by the ability of biocurators to handle the massive and rapidly growing scientific literature. Within the community-oriented wiki framework for GO annotation called the Gene Ontology Normal Usage Tracking System (GONUTS), we describe an approach to expand biocuration through crowdsourcing with undergraduates. This multiplies the number of high-quality annotations in international databases, enriches our coverage of the literature on normal gene function, and pushes the field in new directions. From an intercollegiate competition judged by experienced biocurators, Community Assessment of Community Annotation with Ontologies (CACAO), we have contributed nearly 5,000 literature-based annotations. Many of those annotations are to organisms not currently well-represented within GO. Over a 10-year history, our community contributors have spurred changes to the ontology not traditionally covered by professional biocurators. The CACAO principle of relying on community members to participate in and shape the future of biocuration in GO is a powerful and scalable model used to promote the scientific enterprise. It also provides undergraduate students with a unique and enriching introduction to critical reading of primary literature and acquisition of marketable skills. 
    more » « less
  5. Abstract Premise The functional annotation of genes is a crucial component of genomic analyses. A common way to summarize functional annotations is with hierarchical gene ontologies, such as the Gene Ontology (GO) Resource. GO includes information about the cellular location, molecular function(s), and products/processes that genes produce or are involved in. For a set of genes, summarizing GO annotations using pre‐defined, higher‐order terms (GO slims) is often desirable in order to characterize the overall function of the data set, and it is impractical to do this manually. Methods and Results The GOgetter pipeline consists of bash and Python scripts. From an input FASTA file of nucleotide gene sequences, it outputs text and image files that list (1) the best hit for each input gene in a set of reference gene models, (2) all GO terms and annotations associated with those hits, and (3) a summary and visualization of GO slim categories for the data set. These output files can be queried further and analyzed statistically, depending on the downstream need(s). Conclusions GO annotations are a widely used “universal language” for describing gene functions and products. GOgetter is a fast and easy‐to‐implement pipeline for obtaining, summarizing, and visualizing GO slim categories associated with a set of genes. 
    more » « less