Two sulphur-oxidizing, chemolithoautotrophic aerobes were isolated from the chemocline of an anchialine sinkhole located within the Weeki Wachee River of Florida. Gram-stain-negative cells of both strains were motile, chemotactic rods. Phylogenetic analysis of the 16S rRNA gene and predicted amino acid sequences of ribosomal proteins, average nucleotide identities, and alignment fractions suggest the strains HH1 T and HH3 T represent novel species belonging to the genus Thiomicrorhabdus . The genome G+C fraction of HH1 T is 47.8 mol% with a genome length of 2.61 Mb, whereas HH3 T has a G+C fraction of 52.4 mol% and 2.49 Mb genome length. Major fatty acids of the two strains included C 16 : 1 , C 18 : 1 and C 16 : 0 , with the addition of C 10:0 3-OH in HH1 T and C 12 : 0 in HH3 T . Chemolithoautotrophic growth of both strains was supported by elemental sulphur, sulphide, tetrathionate, and thiosulphate, and HH1 T was also able to use molecular hydrogen. Neither strain was capable of heterotrophic growth or use of nitrate as a terminal electron acceptor. Strain HH1 T grew from pH 6.5 to 8.5, with an optimum of pH 7.4, whereas strain HH3 T grew from pH 6 to 8 with an optimum of pH 7.5. Growth was observed between 15–35 °C with optima of 32.8 °C for HH1 T and 32 °C for HH3 T . HH1 T grew in media with [NaCl] 80–689 mM, with an optimum of 400 mM, while HH3 T grew at 80–517 mM, with an optimum of 80 mM. The name Thiomicrorhabdus heinhorstiae sp. nov. is proposed, and the type strain is HH1 T (=DSM 111584 T =ATCC TSD-240 T ). The name Thiomicrorhabdus cannonii sp. nov is proposed, and the type strain is HH3 T (=DSM 111593 T =ATCC TSD-241 T ).
more »
« less
Comparative genome analysis of test algal strain NIVA-CHL1 (Raphidocelis subcapitata) maintained in microalgal culture collections worldwide
Raphidocelis subcapitata is one of the most frequently used species for algal growth inhibition tests. Accordingly, many microalgal culture collections worldwide maintain R . subcapitata for distribution to users. All R . subcapitata strains maintained in these collections are derived from the same cultured strain, NIVA-CHL1. However, considering that 61 years have passed since this strain was isolated, we suspected that NIVA-CHL1 in culture collections might have acquired various mutations. In this study, we compared the genome sequences among NIVA-CHL1 from 8 microalgal culture collections and one laboratory in Japan to evaluate the presence of mutations. We found single-nucleotide polymorphisms or indels at 19,576 to 28,212 sites per strain in comparison with the genome sequence of R . subcapitata NIES-35, maintained at the National Institute for Environmental Studies, Tsukuba, Japan. These mutations were detected not only in non-coding but also in coding regions; some of the latter mutations may affect protein function. In growth inhibition test with 3,5-dichlorophenol, EC50 values varied 2.6-fold among the 9 strains. In the ATCC 22662–2 and CCAP 278/4 strains, we also detected a mutation in the gene encoding small-conductance mechanosensitive ion channel, which may lead to protein truncation and loss of function. Growth inhibition test with sodium chloride suggested that osmotic regulation has changed in ATCC 22662–2 and CCAP 278/4 in comparison with NIES-35.
more »
« less
- Award ID(s):
- 1755220
- PAR ID:
- 10298899
- Editor(s):
- Cao, Yi
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 15
- Issue:
- 11
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0241889
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Discovery of new strains of bacteria that inhibit pathogen growth can facilitate improvements in biocontrol and probiotic strategies. Traditional, plate-based co-culture approaches that probe microbial interactions can impede this discovery as these methods are inherently low-throughput, labor-intensive, and qualitative. We report a second-generation, photo-addressable microwell device, developed to iteratively screen interactions between candidate biocontrol agents existing in bacterial strain libraries and pathogens under increasing pathogen pressure. Microwells (0.6 pl volume) provide unique co-culture sites between library strains and pathogens at controlled cellular ratios. During sequential screening iterations, library strains are challenged against increasing numbers of pathogens to quantitatively identify microwells containing strains inhibiting the highest numbers of pathogens. Ring-patterned 365 nm light is then used to ablate a photodegradable hydrogel membrane and sequentially release inhibitory strains from the device for recovery. Pathogen inhibition with each recovered strain is validated, followed by whole genome sequencing. To demonstrate the rapid nature of this approach, the device was used to screen a 293-membered biovar 1 agrobacterial strain library for strains inhibitory to the plant pathogen Agrobacterium tumefaciens sp. 15955. One iterative screen revealed nine new inhibitory strains. For comparison, plate-based methods did not uncover any inhibitory strains from the library (n = 30 plates). The novel pathogen-challenge screening mode developed here enables rapid selection and recovery of strains that effectively suppress pathogen growth from bacterial strain libraries, expanding this microwell technology platform toward rapid, cost-effective, and scalable screening for probiotics, biocontrol agents, and inhibitory molecules that can protect against known or emerging pathogens.more » « less
-
Abstract The CHAB-I-5 cluster is a pelagic lineage that can comprise a significant proportion of all Roseobacters in surface oceans and has predicted roles in biogeochemical cycling via heterotrophy, aerobic anoxygenic photosynthesis (AAnP), CO oxidation, DMSP degradation, and other metabolisms. Though cultures of CHAB-I-5 have been reported, none have been explored and the best-known representative, strain SB2, was lost from culture after obtaining the genome sequence. We have isolated two new CHAB-I-5 representatives, strains US3C007 and FZCC0083, and assembled complete, circularized genomes with 98.7% and 92.5% average nucleotide identities with the SB2 genome. Comparison of these three with 49 other unique CHAB-I-5 metagenome-assembled and single-cell genomes indicated that the cluster represents a genus with two species, and we identified subtle differences in genomic content between the two species subclusters. Metagenomic recruitment from over fourteen hundred samples expanded their known global distribution and highlighted both isolated strains as representative members of the clade. FZCC0083 grew over twice as fast as US3C007 and over a wider range of temperatures. The axenic culture of US3C007 occurs as pleomorphic cells with most exhibiting a coccobacillus/vibrioid shape. We propose the name Candidatus Thalassovivens spotae, gen nov., sp. nov. for the type strain US3C007T (= ATCC TSD-433T = NCMA B160T).more » « less
-
The bacterial strain JCVI-syn3.0 stands as the first example of a living organism with a minimized synthetic genome, derived from the Mycoplasma mycoides genome and chemically synthesized in vitro. Here, we report the experimental evolution of a syn3.0- derived strain. Ten independent replicates were evolved for several hundred generations, leading to growth rate improvements of > 15%. Endpoint strains possessed an average of 8 mutations composed of indels and SNPs, with a pronounced C/G- > A/T transversion bias. Multiple genes were repeated mutational targets across the independent lineages, including phase variable lipoprotein activation, 5 distinct; nonsynonymous substitutions in the same membrane transporter protein, and inactivation of an uncharacterized gene. Transcriptomic analysis revealed an overall tradeoff reflected in upregulated ribosomal proteins and downregulated DNA and RNA related proteins during adaptation. This work establishes the suitability of synthetic, minimal strains for laboratory evolution, providing a means to optimize strain growth characteristics and elucidate gene functionality.more » « less
-
Abstract Studies of microbial interactions often emphasize interactions with large, easily measurable growth differences and short-term ecological outcomes spanning just a few generations. However, more subtle interactions, such as those without obvious phenotypes, may play a significant role in shaping both the short-term ecological dynamics and the long-term evolutionary trajectories of microbial species. We used the cheese rind model microbiome to examine how two fungal species, Penicillium camemberti and Geotrichum candidum, impact global gene expression and genome evolution of the bacterium Pseudomonas carnis LP. Even though fungi had limited impacts on the growth of P. carnis LP, approximately 4–40% of its genome was differentially expressed, depending on the specific fungal partner. When we evolved this Pseudomonas strain alone or in co-culture with each of the fungi, we observed frequent mutations in global regulators of nitrogen regulation, secondary metabolite production, and motility, depending on the fungus. Strikingly, many strains with mutations in the nitrogen regulatory gene ntrB emerged when evolved alone or with G. candidum, but not with P. camemberti. Metabolomic and fitness experiments demonstrate that release of free amino acids by P. camemberti removes the fitness advantages conferred by ntrB mutations. Collectively, these results demonstrate that even in the absence of major short-term growth effects, fungi can have substantial impacts on the transcriptome and genomic evolution of bacterial species.more » « less
An official website of the United States government

