In this paper, we present a game-theoretic analysis of ransomware. To this end, we provide theoretical and empirical analysis of a two-player Attacker-Defender (A-D) game, as well as a Defender-Insurer (D-I) game; in the latter, the attacker is assumed to be a non-strategic third party. Our model assumes that the defender can invest in two types of protection against ransomware attacks: (1) general protection through a deterrence effort, making attacks less likely to succeed, and (2) a backup effort serving the purpose of recourse, allowing the defender to recover from successful attacks. The attacker then decides on a ransom amount in the event of a successful attack, with the defender choosing to pay ransom immediately, or to try to recover their data first while bearing a recovery cost for this recovery attempt. Note that recovery is not guaranteed to be successful, which may eventually lead to the defender paying the demanded ransom. Our analysis of the A-D game shows that the equilibrium falls into one of three scenarios: (1) the defender will pay the ransom immediately without having invested any effort in backup, (2) the defender will pay the ransom while leveraging backups as a credible threat to force a lower ransom demand, and (3) the defender will try to recover data, only paying the ransom when recovery fails. We observe that the backup effort will be entirely abandoned when recovery is too expensive, leading to the (worst-case) first scenario which rules out recovery. Furthermore, our analysis of the D-I game suggests that the introduction of insurance leads to moral hazard as expected, with the defender reducing their efforts; less obvious is the interesting observation that this reduction is mostly in their backup effort.
more »
« less
On the Effectiveness of Behavior-Based Ransomware Detection
Ransomware has been a growing threat to end-users in the past few years. In response, there is also a burgeoning market for anti-ransomware defense products, as well as research prototypes that explore more advanced, behavioral analyses. Intuitively, ransomware should be amenable to identification through behavioral analysis, since ransomware recursively walks a user’s files and encrypts them, overwriting or deleting the plaintext. This paper contributes a study of the effectiveness of these behavior-based ransomware defenses, from both commercial products and academic proposals. We drive the study with a dead simple ransomware, augmented with a number of both straightforward and new evasion techniques. Surprisingly, our results indicate that most commercial products are strikingly ineffective. Ten out of 15 commercial products could not detect our simple ransomware without any evasive techniques; most of the rest were evaded and able to ransom user data with some combination of simple techniques. Only one tool appears to correctly identify our ransomware, but suffers from staggering false positives, including flagging Windows Explorer, Firefox, and Notepad as ransomware during routine operation. Our paper identifies a number of techniques to manipulate entropy to match the original file. The paper further shows that partial encryption, of as little as 3–5% of a file’s data is sufficient to ransom most file formats. Finally, we show that a combination of these techniques can render an aggregate malice score that is well below that of a Linux kernel compile. In summary, these results indicate that it is highly likely that ransomware will be able to adapt its behavior to fit within the range of expected benign behaviors, avoiding detection even by future generations of behavioral ransomware detectors.
more »
« less
- Award ID(s):
- 1700512
- PAR ID:
- 10298966
- Date Published:
- Journal Name:
- International Conference on Security and Privacy in Communication Systems
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Ransomware attacks are increasingly prevalent in recent years. Crypto-ransomware corrupts files on an infected device and demands a ransom to recover them. In computing devices using flash memory storage (e.g., SSD, MicroSD, etc.), existing designs recover the compromised data by extracting the entire raw flash memory image, restoring the entire external storage to a good prior state. This is feasible through taking advantage of the out-of-place updates feature implemented in the flash translation layer (FTL). However, due to the lack of “file” semantics in the FTL, such a solution does not allow a fine-grained data recovery in terms of files. Considering the file-centric nature of ransomware attacks, recovering the entire disk is mostly unnecessary. In particular, the user may just wish a speedy recovery of certain critical files after a ransomware attack. In this work, we have designed$$\textsf{FFRecovery}$$ , a new ransomware defense strategy that can support fine-grained per file data recovery after the ransomware attack. Our key idea is that, to restore a file corrupted by the ransomware, we (1) restore its file system metadata via file system forensics, and (2) extract its file data via raw data extraction from the FTL, and (3) assemble the corresponding file system metadata and the file data. Another essential aspect of$$\textsf{FFRecovery}$$ is that we add a garbage collection delay and freeze mechanism into the FTL so that no raw data will be lost prior to the recovery and, additionally, the raw data needed for the recovery can be always located. A prototype of$$\textsf{FFRecovery}$$ has been developed and our experiments using real-world ransomware samples demonstrate the effectiveness of$$\textsf{FFRecovery}$$ . We also demonstrate that$$\textsf{FFRecovery}$$ has negligible storage cost and performance impact.more » « less
-
Ransomware is a malware that encrypts victim's data, where the decryption key is released after a ransom is paid by the data owner to the attacker. Many ransomware attacks were reported recently, making anti-ransomware a crucial need in security operation, and an issue for the security community to tackle. In this paper, we propose a new approach to defending against ransomware inside NAND flash-based SSDs. To realize the idea of defense-inside-SSDs, both a lightweight detection technique and a perfect recovery algorithm to be used as a part of SSDs firmware should be developed. To this end, we propose a new set of lightweight behavioral features on ran-somware's overwriting pattern, which are invariant across various ransomwares. Our features rely on observing the block I/O request headers only, and not the payload. For perfect and instant recovery, we also propose using the delayed deletion feature of SSDs, which is intrinsic to NAND flash. To demonstrate their feasibility, we implement our algorithms atop an open-channel SSD as a working prototype called SSD-Insider. In experiments using eight real-world and two in-house ransomwares with various background applications running, SSD-Insider achieved a detection accuracy 0% FRR/FAR in most scenarios, and only 5% FAR when heavy overwriting resembling ransomware's data wiping occurs. SSD-Insider detects ransomware activity within 10s, and recovers instantly an infected SSD within 1s with 0% data loss. The additional software overheads incurred by the SSD-Insider is just 147 ns and 254 ns for 4-KB reads and writes, respectively, which is negligible considering NAND chip latency (50-1000 μs).more » « less
-
Recent proliferation of cryptocurrencies that allow for pseudo-anonymous transactions has resulted in a spike of various e-crime activities and, particularly, cryptocurrency payments in hacking attacks demanding ransom by encrypting sensitive user data. Currently, most hackers use Bitcoin for payments, and existing ransomware detection tools depend only on a couple of heuristics and/or tedious data gathering steps. By capitalizing on the recent advances in Topological Data Analysis, we propose a novel efficient and tractable framework to automatically predict new ransomware transactions in a ransomware family, given only limited records of past transactions. Moreover, our new methodology exhibits high utility to detect emergence of new ransomware families, that is, detecting ransomware with no past records of transactions.more » « less
-
Ransomware is increasingly prevalent in recent years. To defend against ransomware in computing devices using flash memory as external storage, existing designs extract the entire raw flash memory data to restore the external storage to a good state. However, they cannot allow a fine-grained recovery in terms of user files as raw flash memory data do not have the semantics of "files". In this work, we design FFRecovery, a new ransomware defense strategy that can support fine-grained data recovery after the attacks. Our key idea is, to recover a file corrupted by the ransomware, we can 1) restore its file system metadata via file system forensics, and 2) extract its file data via raw data extraction from the flash translation layer, and 3) assemble the corresponding file system metadata and the file data. A simple prototype of FFRecovery has been developed and some preliminary results are provided.more » « less
An official website of the United States government

