skip to main content

Title: Constraints on the diffuse flux of ultrahigh energy neutrinos from four years of Askaryan Radio Array data in two stations
The Askaryan Radio Array (ARA) is an ultrahigh energy (UHE, >10^17  eV) neutrino detector designed to observe neutrinos by searching for the radio waves emitted by the relativistic products of neutrino-nucleon interactions in Antarctic ice. In this paper, we present constraints on the diffuse flux of ultrahigh energy neutrinos between 1016 and 1021  eV resulting from a search for neutrinos in two complementary analyses, both analyzing four years of data (2013–2016) from the two deep stations (A2, A3) operating at that time. We place a 90% CL upper limit on the diffuse all flavor neutrino flux at 1018  eV of EF(E)=5.6×10^−16  cm^−2 s^−1 sr^−1. This analysis includes four times the exposure of the previous ARA result and represents approximately 1/5^th the exposure expected from operating ARA until the end of 2022.
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Award ID(s):
2013134 2012973
Publication Date:
NSF-PAR ID:
10299016
Journal Name:
Physical review
Volume:
102
Issue:
043021
ISSN:
2470-0010
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Ultraluminous infrared galaxies (ULIRGs) have infrared luminosities L IR ≥ 10 12 L ⊙ , making them the most luminous objects in the infrared sky. These dusty objects are generally powered by starbursts with star formation rates that exceed 100 M ⊙ yr −1 , possibly combined with a contribution from an active galactic nucleus. Such environments make ULIRGs plausible sources of astrophysical high-energy neutrinos, which can be observed by the IceCube Neutrino Observatory at the South Pole. We present a stacking search for high-energy neutrinos from a representative sample of 75 ULIRGs with redshift z ≤ 0.13 usingmore »7.5 yr of IceCube data. The results are consistent with a background-only observation, yielding upper limits on the neutrino flux from these 75 ULIRGs. For an unbroken E −2.5 power-law spectrum, we report an upper limit on the stacked flux Φ ν μ + ν ¯ μ 90 % = 3.24 × 10 − 14 TeV − 1 cm − 2 s − 1 ( E / 10 TeV ) − 2.5 at 90% confidence level. In addition, we constrain the contribution of the ULIRG source population to the observed diffuse astrophysical neutrino flux as well as model predictions.« less
  2. In order to identify the sources of the observed diffuse high-energy neutrino flux, it is crucial to discover their electromagnetic counterparts. To increase the sensitivity of detecting counterparts of transient or variable sources by telescopes with a limited field of view, IceCube began releasing alerts for single high-energy ( E ν  >  60 TeV) neutrino detections with sky localisation regions of order 1° radius in 2016. We used Pan-STARRS1 to follow-up five of these alerts during 2016–2017 to search for any optical transients that may be related to the neutrinos. Typically 10–20 faint ( m i P1  ≲ 22.5 mag) extragalacticmore »transients are found within the Pan-STARRS1 footprints and are generally consistent with being unrelated field supernovae (SNe) and AGN. We looked for unusual properties of the detected transients, such as temporal coincidence of explosion epoch with the IceCube timestamp, or other peculiar light curve and physical properties. We found only one transient that had properties worthy of a specific follow-up. In the Pan-STARRS1 imaging for IceCube-160427A (probability to be of astrophysical origin of ∼50%), we found a SN PS16cgx, located at 10.0′ from the nominal IceCube direction. Spectroscopic observations of PS16cgx showed that it was an H-poor SN at redshift z  = 0.2895 ± 0.0001. The spectra and light curve resemble some high-energy Type Ic SNe, raising the possibility of a jet driven SN with an explosion epoch temporally coincident with the neutrino detection. However, distinguishing Type Ia and Type Ic SNe at this redshift is notoriously difficult. Based on all available data we conclude that the transient is more likely to be a Type Ia with relatively weak Si  II absorption and a fairly normal rest-frame r -band light curve. If, as predicted, there is no high-energy neutrino emission from Type Ia SNe, then PS16cgx must be a random coincidence, and unrelated to the IceCube-160427A. We find no other plausible optical transient for any of the five IceCube events observed down to a 5 σ limiting magnitude of m i P1  ≈ 22 mag, between 1 day and 25 days after detection.« less
  3. The Beamforming Elevated Array for COsmic Neutrinos (BEACON) is a concept for a neutrino telescope designed to measure tau lepton air showers generated from tau neutrino interactions near the horizon. This detection mechanism provides a pure measurement of the tau flavor of cosmogenic neutrinos, which could be used to set limits on the observed flavor ratios for cosmogenic neutrinos in a manner complimentary to the all-flavor neutrino flux measurements made by other experiments. BEACON is expected to also be capable of detecting cosmic rays through RF-only triggers. BEACON aims to achieve this sensitivity by using mountaintop radio arrays of dual-polarizedmore »antennas operating in the 30-80 MHz band which utilize directional interferometric triggering. BEACON stations are designed to efficiently use a small amount of instrumentation, allowing for deployment in a variety of high-elevation sites. The interferometric trigger provides a natural tool for directional-based anthropogenic RFI rejection at the trigger level, broadening the list for potential station sites. The BEACON prototype has seen continuous design advancements towards improving the mechanical durability and scientific capabilities since its initial deployment at White Mountain Research Station in 2018. Here we present the current prototype’s sensitivity to RF-triggered cosmic-ray background signals. We also present the next generation prototype, which includes scintillating cosmic ray detectors, improved antennas, and refined calibration techniques.« less
  4. The Glashow resonance describes the resonant formation of a W− boson during the interaction of a high-energy electron antineutrino with an electron1, peaking at an antineutrino energy of 6.3 petaelectronvolts (PeV) in the rest frame of the electron. Whereas this energy scale is out of reach for currently operating and future planned particle accelerators, natural astrophysical phenomena are expected to produce antineutrinos with energies beyond the PeV scale. Here we report the detection by the IceCube neutrino observatory of a cascade of high-energy particles (a particle shower) consistent with being created at the Glashow resonance. A shower with an energymore »of 6.05 ± 0.72 PeV (determined from Cherenkov radiation in the Antarctic Ice Sheet) was measured. Features consistent with the production of secondary muons in the particle shower indicate the hadronic decay of a resonant W− boson, confirm that the source is astrophysical and provide improved directional localization. The evidence of the Glashow resonance suggests the presence of electron antineutrinos in the astrophysical flux, while also providing further validation of the standard model of particle physics. Its unique signature indicates a method of distinguishing neutrinos from antineutrinos, thus providing a way to identify astronomical accelerators that produce neutrinos via hadronuclear or photohadronic interactions, with or without strong magnetic fields. As such, knowledge of both the flavour (that is, electron, muon or tau neutrinos) and charge (neutrino or antineutrino) will facilitate the advancement of neutrino astronomy.« less
  5. Abstract We discuss Dirac neutrinos whose right-handed component ν R has new interac­tions that may lead to a measurable contribution to the effective number of relativistic neutrino species N eff . We aim at a model-independent and comprehensive study on a variety of possibilities. Processes for ν R -genesis from decay or scattering of thermal species, with spin-0, spin-1/2, or spin-1 initial or final states are all covered. We calculate numerically and analytically the contribution of ν R to N eff primarily in the freeze-in regime, since the freeze-out regime has been studied before. While our approximate analytical results applymore »only to freeze-in, our numerical calculations work for freeze-out as well, including the transition between the two regimes. Using current and future constraints on N eff , we obtain limits and sensitivities of CMB experiments on masses and couplings of the new interactions. As a by-product, we obtain the contribution of Higgs-neutrino interactions, Δ N eff SM ≃ 7.5 × 10 -12 , assuming the neutrino mass is 0.1 eV and generated by the standard Higgs mechanism.« less