skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Heat Flux Sensing for Machine-Learning-Based Personal Thermal Comfort Modeling
In recent years, physiological features have gained more attention in developing models of personal thermal comfort for improved and accurate adaptive operation of Human-In-The-Loop (HITL) Heating, Ventilation, and Air-Conditioning (HVAC) systems. Pursuing the identification of effective physiological sensing systems for enhancing flexibility of human-centered and distributed control, using machine learning algorithms, we have investigated how heat flux sensing could improve personal thermal comfort inference under transient ambient conditions. We have explored the variations of heat exchange rates of facial and wrist skin. These areas are often exposed in indoor environments and contribute to the thermoregulation mechanism through skin heat exchange, which we have coupled with variations of skin and ambient temperatures for inference of personal thermal preferences. Adopting an experimental and data analysis methodology, we have evaluated the modeling of personal thermal preference of 18 human subjects for well-known classifiers using different scenarios of learning. The experimental measurements have revealed the differences in personal thermal preferences and how they are reflected in physiological variables. Further, we have shown that heat exchange rates have high potential in improving the performance of personal inference models even compared to the use of skin temperature.  more » « less
Award ID(s):
1663513
PAR ID:
10299363
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Sensors
Volume:
19
Issue:
17
ISSN:
1424-8220
Page Range / eLocation ID:
3691
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. About 40% of the energy produced globally is consumed within buildings, primarily for providing occupants with comfortable work and living spaces. However, despite the significant impacts of such energy consumption on the environment, the lack of thermal comfort among occupants is a common problem that can lead to health complications and reduced productivity. To address this problem, it is particularly important to understand occupants’ thermal comfort in real-time to dynamically control the environment. This study investigates an infrared thermal camera network to extract skin temperature features and predict occupants’ thermal preferences at flexible distances and angles. This study distinguishes from existing methods in two ways: (1) the proposed method is a non-intrusive data collection approach which does not require human participation or personal devices; (2) it uses low-cost thermal cameras and RGB-D sensors which can be rapidly reconfigured to adapt to various settings and has little or no hardware infrastructure dependency. The proposed camera network is verified using the facial skin temperature collected from 16 subjects in a multi-occupancy experiment. The results show that all 16 subjects observed a statistically higher skin temperature as the room temperature increases. The variations in skin temperature also correspond to the distinct comfort states reported by the subjects. The post-experiment evaluation suggests that the networked thermal cameras have a minimal interruption of building occupants. The proposed approach demonstrates the potential to transition the human physiological data collection from an intrusive and wearable device-based approach to a truly non-intrusive and scalable approach. 
    more » « less
  2. Understanding occupants’ thermal comfort is essential for the effective operation of Heating, Ventilation, and Air Conditioning (HVAC) systems. Existing studies of the “human-in-the-loop” HVAC control generally suffer from: (1) excessive reliance on cumbersome human feedback; and (2) intrusiveness caused by conventional data collection methods. To address these limitations, this paper investigates the low-cost thermal camera as a non-intrusive approach to assess thermal comfort in real time using facial skin temperature. The framework developed can automatically detect occupants, extract facial regions, measure skin temperature, and interpret thermal comfort with minimal interruption or participation of occupants. The framework is validated using the facial skin temperature collected from twelve occupants. Personal comfort models trained from different machine learning algorithms are compared and results show that Random Forest model can achieve an accuracy of 85% and also suggest that the skin temperature of ears, nose, and cheeks are most indicative of thermal comfort. 
    more » « less
  3. Thermal comfort is a significant factor in the indoor building environment because it influences both human productivity and health. A currently popular method for predicting thermal comfort levels, the Predicted Mean Vote (PMV) and Predicted Percent Dissatisfied (PPD) model, unfortunately, has certain limitations. Consequently, the development of a better method for making accurate predictions (especially for individuals) is needed. Our goal was to develop a tool to predict individual thermal comfort preferences and automatically control the heating, ventilation, and air conditioning (HVAC) systems. This study adopted a series of human-subject experiments to collect essential data. All collected data was analyzed by adopting different machine learning algorithms. The machine learning algorithms predicted individual thermal comfort levels and thermal sensations, based on facial skin temperatures of participants in the experiments. These predictions were input data for the HVAC system control model, and results supported the potential for using facial skin temperatures to predict thermal comfort and thermal sensation levels. Moreover, this tool provided automatic control of the HVAC systems that can help improve the indoor environment of a building. 
    more » « less
  4. It is well established that thermal comfort is an influential factor in human health and wellbeing. Uncomfortable thermal environments can reduce occupants’ comfort and productivity, and cause symptoms of sick building syndrome. To harness the built environment as a medium to support human health, well-being, and engagement, it is significantly important to understand occupants’ thermal comfort in real time. To this end, this study proposes a non-intrusive method to collect occupants’ facial skin temperature and interpret their thermal comfort conditions by fusing the thermal and RGB-D images collected from multiple low-cost thermographic and Kinect sensors. This study distinguishes from existing methods of thermal comfort assessment in three ways: 1) it is a truly non-intrusive data collection approach which has a minimal interruption or participation of building occupants; 2) the proposed approach can simultaneously identify and interpret multiple occupants’ thermal comfort; 3) it uses low-cost thermographic and RGB-D cameras which can be rapidly deployed and reconfigured to adapt to various settings. This approach was experimentally evaluated in a transient heating environment (room temperature increased from 23 to 27 °C) to verify its applicability in real operational built environments. In total, all 6 subjects observed moderate to strong positive correlations between the ambient room temperature and subjects’ facial skin temperature collected using the proposed approach. Additionally, all 6 subjects have voted different thermal sensations at the beginning (the first 5 minutes) and at the end (the last 5 minutes) of the heating experiment, which can be reflected by the significant differences in the mean skin temperature of these two periods (p < .001). Results of this pilot study demonstrate the feasibility of applying the proposed non-intrusive approach to real multi-occupancy environments to dynamically interpret occupants’ thermal comfort and optimize the operation of building heating, ventilation and air conditioning (HVAC) systems. 
    more » « less
  5. Heating, ventilation and air-conditioning (HVAC) systems have been adopted to create comfortable, healthy and safe indoor environments. In the control loop, the technical feature of the human demand-oriented supply can help operate HVAC effectively. Among many technical options, real time monitoring based on feedback signals from end users has been frequently reported as a critical technology to confirm optimizing building performance. Recent studies have incorporated human thermal physiology signals and thermal comfort/discomfort status as real-time feedback signals. A series of human subject experiments used to be conducted by primarily adopting subjective questionnaire surveys in a lab-setting study, which is limited in the application for reality. With the help of advanced technologies, physiological signals have been detected, measured and processed by using multiple technical formats, such as wearable sensors. Nevertheless, they mostly require physical contacts with the skin surface in spite of the small physical dimension and compatibility with other wearable accessories, such as goggles, and intelligent bracelets. Most recently, a low cost small infrared camera has been adopted for monitoring human facial images, which could detect the facial skin temperature and blood perfusion in a contactless way. Also, according to latest pilot studies, a conventional digital camera can generate infrared images with the help of new methods, such as the Euler video magnification technology. Human thermal comfort/discomfort poses can also be detected by video methods without contacting human bodies and be analyzed by the skeleton keypoints model. In this review, new sensing technologies were summarized, their cons and pros were discussed, and extended applications for the demand-oriented ventilation were also reviewed as potential development and applications. 
    more » « less