skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Towards Multiparty Computation Withstanding Coercion of All Parties
Incoercible multi-party computation (Canetti-Gennaro ’96) allows parties to engage in secure computation with the additional guarantee that the public transcript of the computation cannot be used by a coercive outsider to verify representations made by the parties regarding their inputs, outputs, and local random choices. That is, it is guaranteed that the only deductions regarding the truthfulness of such representations, made by an outsider who has witnessed the communication among the parties, are the ones that can be drawn just from the represented inputs and outputs alone. To date, all incoercible secure computation protocols withstand coercion of only a fraction of the parties, or else assume that all parties use an execution environment that makes some crucial parts of their local states physically inaccessible even to themselves. We consider, for the first time, the setting where all parties are coerced, and the coercer expects to see the entire history of the computation. We allow both protocol participants and external attackers to access a common reference string which is generated once and for all by an uncorruptable trusted party. In this setting we construct: - A general multi-party function evaluation protocol, for any number of parties, that withstands coercion of all parties, as long as all parties use the prescribed ``faking algorithm'' upon coercion. This holds even if the inputs and outputs represented by coerced parties are globally inconsistent with the evaluated function. - A general two-party function evaluation protocol that withstands even the %``mixed'' case where some of the coerced parties do follow the prescribed faking algorithm. (For instance, these parties might collude with the coercer and disclose their true local states.) This protocol is limited to functions where the input of at least one of the parties is taken from a small (poly-size) domain. It uses fully deniable encryption with public deniability for one of the parties; when instantiated using the fully deniable encryption of Canetti, Park, and Poburinnaya (Crypto'20), it takes 3 rounds of communication. Both protocols operate in the common reference string model, and use fully bideniable encryption (Canetti Park and Poburinnaya, Crypto'20) and sub-exponential indistinguishability obfuscation. Finally, we show that protocols with certain communication pattern cannot be incoercible, even in a weaker setting where only some parties are coerced.  more » « less
Award ID(s):
1931714 1801564
PAR ID:
10299514
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Theory of Cryptography Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Oshman, Rotem (Ed.)
    Broadcast protocols enable a set of n parties to agree on the input of a designated sender, even in the face of malicious parties who collude to attack the protocol. In the honest-majority setting, a fruitful line of work harnessed randomization and cryptography to achieve low-communication broadcast protocols with sub-quadratic total communication and with "balanced" sub-linear communication cost per party. However, comparatively little is known in the dishonest-majority setting. Here, the most communication-efficient constructions are based on the protocol of Dolev and Strong (SICOMP '83), and sub-quadratic broadcast has not been achieved even using randomization and cryptography. On the other hand, the only nontrivial ω(n) communication lower bounds are restricted to deterministic protocols, or against strong adaptive adversaries that can perform "after the fact" removal of messages. We provide communication lower bounds in this space, which hold against arbitrary cryptography and setup assumptions, as well as a simple protocol showing near tightness of our first bound. - Static adversary. We demonstrate a tradeoff between resiliency and communication for randomized protocols secure against n-o(n) static corruptions. For example, Ω(n⋅ polylog(n)) messages are needed when the number of honest parties is n/polylog(n); Ω(n√n) messages are needed for O(√n) honest parties; and Ω(n²) messages are needed for O(1) honest parties. Complementarily, we demonstrate broadcast with O(n⋅polylog(n)) total communication and balanced polylog(n) per-party cost, facing any constant fraction of static corruptions. - Weakly adaptive adversary. Our second bound considers n/2 + k corruptions and a weakly adaptive adversary that cannot remove messages "after the fact." We show that any broadcast protocol within this setting can be attacked to force an arbitrary party to send messages to k other parties. Our bound implies limitations on the feasibility of balanced low-communication protocols: For example, ruling out broadcast facing 51% corruptions, in which all non-sender parties have sublinear communication locality. 
    more » « less
  2. The problem of reliable/secure all-to-all communication over low-degree networks has been essential for communication-local (CL) n-party MPC (i.e., MPC protocols where every party directly communicates only with a few, typically polylogarithmic in n, parties) and more recently for communication over ad hoc networks, which are used in blockchain protocols. However, a limited number of adaptively secure solutions exist, and they all make relatively strong assumptions on the ability of parties to act in some specific manner before the adversary can corrupt them. Two such assumptions were made in the work of Chandran et al. [ITCS ’15]—parties can (a) multisend messages to several receivers simultaneously and (b) securely erase the message and the identities of the receivers before the adversary gets a chance to corrupt the sender (even if a receiver is corrupted). A natural question to ask is: Are these assumptions necessary for adaptively secure CL MPC? In this paper, we characterize the feasibility landscape for all-to-all reliable message transmission (RMT) under these two assumptions and use this characterization to obtain (asymptotically) tight feasibility results for CL MPC. – First, we prove a strong impossibility result for a broad class of RMT protocols, termed here store-and-forward protocols, which includes all known communication protocols for CL MPC from standard cryptographic assumptions. Concretely, we show that no such protocol with a certain expansion rate can tolerate a constant fraction of parties being corrupted. – Next, under the assumption of only a PKI, we show that assuming secure erasures, we can obtain an RMT protocol between all pairs of parties with polylogarithmic locality (even without assuming multisend) for the honest majority setting. We complement this result by showing a negative result for the setting of dishonest majority. – Finally, and somewhat surprisingly, under stronger assumptions (i.e., trapdoor permutations with a reverse domain sampler, and compact and malicious circuit-private FHE), we construct a polylogarithmiclocality all-to-one RMT protocol, which is adaptively secure and tolerates any constant fraction of corruptions, without assuming either secure erasures or multisend. This last result uses a novel combination of adaptively secure (e.g., non-committing) encryption and (static) FHE to bypass the impossibility of compact adaptively secure FHE by Katz et al. [PKC’13], which we believe may be of independent interest. Intriguingly, even such assumptions do not allow reducing all-to-all RMT to all-to-one RMT (a reduction which is trivial in the non-CL setting). Still, we can implement what we call sublinear output-set RMT (SOS-RMT for short). We show how SOSRMT can be used for SOS-MPC under the known bounds for feasibility of MPC in the standard (i.e., non-CL) setting assuming, in addition to SOS-RMT, an anonymous PKI. 
    more » « less
  3. The problem of reliable/secure all-to-all communication over low-degree networks has been essential for communication-local (CL) n-party MPC (i.e., MPC protocols where every party directly communicates only with a few, typically polylogarithmic in n, parties) and more recently for communication over ad hoc networks, which are used in blockchain protocols. However, a limited number of adaptively secure solutions exist, and they all make relatively strong assumptions on the ability of parties to act in some specific manner before the adversary can corrupt them. Two such assumptions were made in the work of Chandran et al. [ITCS ’15]—parties can (a) multisend messages to several receivers simultaneously; and (b) securely erase the message and the identities of the receivers, before the adversary gets a chance to corrupt the sender (even if a receiver is corrupted). A natural question to ask is: Are these assumptions necessary for adaptively secure CL MPC? In this paper, we characterize the feasibility landscape for all-to-all reliable message transmission (RMT) under these two assumptions, and use this characterization to obtain (asymptotically) tight feasibility results for CL MPC. First, we prove a strong impossibility result for a broad class of RMT protocols, termed here store-and-forward protocols, which includes all known communication protocols for CL MPC from standard cryptographic assumptions. Concretely, we show that no such protocol with a certain expansion rate can tolerate a constant fraction of parties being corrupted. Next, under the assumption of only a PKI, we show that assuming secure erasures, we can obtain an RMT protocol between all pairs of parties with polylogarithmic locality (even without assuming multisend) for the honest majority setting. We complement this result by showing a negative result for the setting of dishonest majority. Finally, and somewhat surprisingly, under stronger assumptions (i.e., trapdoor permutations with a reverse domain sampler, and compact and malicious circuit-private FHE), we construct a polylogarithmic-locality all-to-one RMT protocol, which is adaptively secure and tolerates any constant fraction of corruptions, without assuming either secure erasures or multisend. This last result uses a novel combination of adaptively secure (e.g., non-committing) encryption and (static) FHE to bypass the impossibility of compact adaptively secure FHE by Katz et al. [PKC’13], which we believe may be of independent interest. Intriguingly, even such assumptions do not allow reducing all-to-all RMT to all-to-one RMT (a reduction which is trivial in the non-CL setting). Still, we can implement what we call sublinear output-set RMT (SOS-RMT for short). We show how SOS-RMT can be used for SOS-MPC under the known bounds for feasibility of MPC in the standard (i.e., non-CL) setting assuming, in addition to SOS-RMT, an anonymous PKI. 
    more » « less
  4. Censor-Hillel, Keren; Grandoni, Fabrizio; Ouaknine, Joel; Puppis, Gabriele (Ed.)
    We study the communication complexity of the Minimum Vertex Cover (MVC) problem on general graphs within the k-party one-way communication model. Edges of an arbitrary n-vertex graph are distributed among k parties. The objective is for the parties to collectively find a small vertex cover of the graph while adhering to a communication protocol where each party sequentially sends a message to the next until the last party outputs a valid vertex cover of the whole graph. We are particularly interested in the trade-off between the size of the messages sent and the approximation ratio of the output solution. It is straightforward to see that any constant approximation protocol for MVC requires communicating Ω(n) bits. Additionally, there exists a trivial 2-approximation protocol where the parties collectively find a maximal matching of the graph greedily and return the subset of vertices matched. This raises a natural question: What is the best approximation ratio achievable using optimal communication of O(n)? We design a protocol with an approximation ratio of (2-2^{-k+1}+ε) and O(n) communication for any desirably small constant ε > 0, which is strictly better than 2 for any constant number of parties. Moreover, we show that achieving an approximation ratio smaller than 3/2 for the two-party case requires n^{1 + Ω(1/lg lg n)} communication, thereby establishing the tightness of our protocol for two parties. A notable aspect of our protocol is that no edges are communicated between the parties. Instead, for any 1 ≤ i < k, the i-th party only communicates a constant number of vertex covers for all edges assigned to the first i parties. An interesting consequence is that the communication cost of our protocol is O(n) bits, as opposed to the typical Ω(nlog n) bits required for many graph problems, such as maximum matching, where protocols commonly involve communicating edges. 
    more » « less
  5. A fundamental question that has been studied in cryptography and in information theory is whether two parties can communicate confidentially using exclusively an open channel. We consider the model in which the two parties hold inputs that are correlated in a certain sense. This model has been studied extensively in information theory, and communication protocols have been designed which exploit the correlation to extract from the inputs a shared secret key. However, all the existing protocols are not universal in the sense that they require that the two parties also know some attributes of the correlation. In other words, they require that each party knows something about the other party’s input. We present a protocol that does not require any prior additional information. It uses space-bounded Kolmogorov complexity to measure correlation and it allows the two legal parties to obtain a common key that looks random to an eavesdropper that observes the communication and is restricted to use a bounded amount of space for the attack. Thus the protocol achieves complexity-theoretical security, but it does not use any unproven result from computational complexity. On the negative side, the protocol is not efficient in the sense that the computation of the two legal parties uses more space than the space allowed to the adversary. 
    more » « less