skip to main content


Title: Towards Multiparty Computation Withstanding Coercion of All Parties
Incoercible multi-party computation (Canetti-Gennaro ’96) allows parties to engage in secure computation with the additional guarantee that the public transcript of the computation cannot be used by a coercive outsider to verify representations made by the parties regarding their inputs, outputs, and local random choices. That is, it is guaranteed that the only deductions regarding the truthfulness of such representations, made by an outsider who has witnessed the communication among the parties, are the ones that can be drawn just from the represented inputs and outputs alone. To date, all incoercible secure computation protocols withstand coercion of only a fraction of the parties, or else assume that all parties use an execution environment that makes some crucial parts of their local states physically inaccessible even to themselves. We consider, for the first time, the setting where all parties are coerced, and the coercer expects to see the entire history of the computation. We allow both protocol participants and external attackers to access a common reference string which is generated once and for all by an uncorruptable trusted party. In this setting we construct: - A general multi-party function evaluation protocol, for any number of parties, that withstands coercion of all parties, as long as all parties use the prescribed ``faking algorithm'' upon coercion. This holds even if the inputs and outputs represented by coerced parties are globally inconsistent with the evaluated function. - A general two-party function evaluation protocol that withstands even the %``mixed'' case where some of the coerced parties do follow the prescribed faking algorithm. (For instance, these parties might collude with the coercer and disclose their true local states.) This protocol is limited to functions where the input of at least one of the parties is taken from a small (poly-size) domain. It uses fully deniable encryption with public deniability for one of the parties; when instantiated using the fully deniable encryption of Canetti, Park, and Poburinnaya (Crypto'20), it takes 3 rounds of communication. Both protocols operate in the common reference string model, and use fully bideniable encryption (Canetti Park and Poburinnaya, Crypto'20) and sub-exponential indistinguishability obfuscation. Finally, we show that protocols with certain communication pattern cannot be incoercible, even in a weaker setting where only some parties are coerced.  more » « less
Award ID(s):
1931714 1801564
NSF-PAR ID:
10299514
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Theory of Cryptography Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we study the fascinating notion of output-compressing randomized encodings for Turing Machines, in a shared randomness model. In this model, the encoder and decoder have access to a shared random string, and the efficiency requirement is, the size of the encoding must be independent of the running time and output length of the Turing Machine on the given input, while the length of the shared random string is allowed to grow with the length of the output. We show how to construct output-compressing randomized encodings for Turing machines in the shared randomness model, assuming iO for circuits and any assumption in the set {LWE, DDH, N𝑡ℎ Residuosity}. We then show interesting implications of the above result to basic feasibility questions in the areas of secure multiparty computation (MPC) and indistinguishability obfuscation (iO): 1.Compact MPC for Turing Machines in the Random Oracle Model. In the context of MPC, we consider the following basic feasibility question: does there exist a malicious-secure MPC protocol for Turing Machines whose communication complexity is independent of the running time and output length of the Turing Machine when executed on the combined inputs of all parties? We call such a protocol as a compact MPC protocol. Hubácek and Wichs [HW15] showed via an incompressibility argument, that, even for the restricted setting of circuits, it is impossible to construct a malicious secure two party computation protocol in the plain model where the communication complexity is independent of the output length. In this work, we show how to evade this impossibility by compiling any (non-compact) MPC protocol in the plain model to a compact MPC protocol for Turing Machines in the Random Oracle Model, assuming output-compressing randomized encodings in the shared randomness model. 2. Succinct iO for Turing Machines in the Shared Randomness Model. In all existing constructions of iO for Turing Machines, the size of the obfuscated program grows with a bound on the input length. In this work, we show how to construct an iO scheme for Turing Machines in the shared randomness model where the size of the obfuscated program is independent of a bound on the input length, assuming iO for circuits and any assumption in the set {LWE, DDH, N𝑡ℎ Residuosity}. 
    more » « less
  2. Nissim, K. ; Waters, B. (Ed.)
    Recent new constructions of rate-1 OT [Döttling, Garg, Ishai, Malavolta, Mour, and Ostrovsky, CRYPTO 2019] have brought this primitive under the spotlight and the techniques have led to new feasibility results for private-information retrieval, and homomorphic encryption for branching programs. The receiver communication of this construction consists of a quadratic (in the sender's input size) number of group elements for a single instance of rate-1 OT. Recently [Garg, Hajiabadi, Ostrovsky, TCC 2020] improved the receiver communication to a linear number of group elements for a single string-OT. However, most applications of rate-1 OT require executing it multiple times, resulting in large communication costs for the receiver. In this work, we introduce a new technique for amortizing the cost of multiple rate-1 OTs. Specifically, based on standard pairing assumptions, we obtain a two-message rate-1 OT protocol for which the amortized cost per string-OT is asymptotically reduced to only four group elements. Our results lead to significant communication improvements in PSI and PIR, special cases of SFE for branching programs. - PIR: We obtain a rate-1 PIR scheme with client communication cost of $O(\lambda\cdot\log N)$ group elements for security parameter $\lambda$ and database size $N$. Notably, after a one-time setup (or one PIR instance), any following PIR instance only requires communication cost $O(\log N)$ number of group elements. - PSI with unbalanced inputs: We apply our techniques to private set intersection with unbalanced set sizes (where the receiver has a smaller set) and achieve receiver communication of $O((m+\lambda) \log N)$ group elements where $m, N$ are the sizes of the receiver and sender sets, respectively. Similarly, after a one-time setup (or one PSI instance), any following PSI instance only requires communication cost $O(m \cdot \log N)$ number of group elements. All previous sublinear-communication non-FHE based PSI protocols for the above unbalanced setting were also based on rate-1 OT, but incurred at least $O(\lambda^2 m \log N)$ group elements. 
    more » « less
  3. SPRINGER (Ed.)
    In this work we study the problem of minimizing the round complexity for securely evaluating multiparty functionalities while making black-box use of polynomial time assumptions. In Eurocrypt 2016, Garg et al. showed that assuming all parties have access to a broadcast channel, then at least four rounds of communication are required to securely realize non-trivial functionalities in the plain model. A sequence of works follow-up the result of Garg et al. matching this lower bound under a variety of assumptions. Unfortunately, none of these works make black-box use of the underlying cryptographic primitives. In Crypto 2021, Ishai, Khurana, Sahai, and Srinivasan came closer to matching the four-round lower bound, obtaining a five-round protocol that makes black-box use of oblivious transfer and PKE with pseudorandom public keys. In this work, we show how to realize any input-less functionality (e.g., coin-tossing, generation of key-pairs, and so on) in four rounds while making black-box use of two-round oblivious transfer. As an additional result, we construct the first four-round MPC protocol for generic functionalities that makes black-box use of the underlying primitives, achieving security against non-aborting adversaries. Our protocols are based on a new primitive called list two-party computation. This primitive offers relaxed security compared to the standard notion of secure two-party computation. Despite this relaxation, we argue that this tool suffices for our applications. List two-party computation is of independent interest, as we argue it can also be used for the generation of setups, like oblivious transfer correlated randomness, in three rounds. Prior to our work, generating such a setup required at least four rounds of interactions or a trusted third party. 
    more » « less
  4. Abstract Private set intersection (PSI) allows two mutually distrusting parties each with a set as input, to learn the intersection of both their sets without revealing anything more about their respective input sets. Traditionally, PSI studies the static setting where the computation is performed only once on both parties’ input sets. We initiate the study of updatable private set intersection (UPSI), which allows parties to compute the intersection of their private sets on a regular basis with sets that also constantly get updated. We consider two specific settings. In the first setting called UPSI with addition , parties can add new elements to their old sets. We construct two protocols in this setting, one allowing both parties to learn the output and the other only allowing one party to learn the output. In the second setting called UPSI with weak deletion , parties can additionally delete their old elements every t days. We present a protocol for this setting allowing both parties to learn the output. All our protocols are secure against semi-honest adversaries and have the guarantee that both the computational and communication complexity only grow with the set updates instead of the entire sets. Finally, we implement our UPSI with addition protocols and compare with the state-of-the-art PSI protocols. Our protocols compare favorably when the total set size is sufficiently large, the new updates are sufficiently small, or in networks with low bandwidth. 
    more » « less
  5. Dachman-Soled, Dana (Ed.)
    Adaptive security is a highly desirable property in the design of secure protocols. It tolerates adversaries that corrupt parties as the protocol proceeds, as opposed to static security where the adversary corrupts the parties at the onset of the execution. The well-accepted folklore is that static and adaptive securities are equivalent for perfectly secure protocols. Indeed, this folklore is backed up with a transformation by Canetti et al. (EUROCRYPT'01), showing that any perfectly secure protocol that is statically secure and satisfies some basic requirements is also adaptively secure. Yet, the transformation results in an adaptively secure protocol with inefficient simulation (i.e., where the simulator might run in super-polynomial time even if the adversary runs just in polynomial time). Inefficient simulation is problematic when using the protocol as a sub-routine in the computational setting. Our main question is whether an alternative efficient transformation from static to adaptive security exists. We show an inherent difficulty in achieving this goal generically. In contrast to the folklore, we present a protocol that is perfectly secure with efficient static simulation (therefore also adaptively secure with inefficient simulation), but for which efficient adaptive simulation does not exist (assuming the existence of one-way permutations). In addition, we prove that the seminal protocol of Ben-Or, Goldwasser and Wigderson (STOC'88) is secure against adaptive, semi-honest corruptions with efficient simulation. Previously, adaptive security of the protocol, as is, was only known either for a restricted class of circuits, or for all circuits but with inefficient simulation. 
    more » « less