skip to main content


Title: Detection of Gaussian Attacks in Power Systems under a Scalable Kalman Consensus Filter Framework
The dynamic non-linear state-space model of a power-system consisting of synchronous generators, buses, and static loads has been linearized and a linear measurement function has been considered. A distributed dynamic framework for estimating the state vector of the power system has been designed here. This framework employs a type of distributed Kalman filter (DKF) known as a Kalman consensus filter (KCF) which is located at distributed control centers (DCCs) that fuse locally available noise ridden measurements, state vector estimates of neighboring control centers, and a prediction obtained by the linearized model to obtain a filtered state vector estimate. Further, the local residual at each control center is checked by a median chi-squared detector designed here for bad data/Gaussian attack detection. Simulation results show the working of the KCF for an 8 bus 5 generator system, and the efficacy of the median chi-squared detector in detecting the DCC affected by Gaussian attacks.  more » « less
Award ID(s):
1837472
NSF-PAR ID:
10299541
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2021 IEEE PES General Meeting
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Particle filters avoid parametric estimates for Bayesian posterior densities, which alleviates Gaussian assumptions in nonlinear regimes. These methods, however, are more sensitive to sampling errors than Gaussian-based techniques such as ensemble Kalman filters. A recent study by the authors introduced an iterative strategy for particle filters that match posterior moments—where iterations improve the filter’s ability to draw samples from non-Gaussian posterior densities. The iterations follow from a factorization of particle weights, providing a natural framework for combining particle filters with alternative filters to mitigate the impact of sampling errors. The current study introduces a novel approach to forming an adaptive hybrid data assimilation methodology, exploiting the theoretical strengths of nonparametric and parametric filters. At each data assimilation cycle, the iterative particle filter performs a sequence of updates while the prior sample distribution is non-Gaussian, then an ensemble Kalman filter provides the final adjustment when Gaussian distributions for marginal quantities are detected. The method employs the Shapiro–Wilk test to determine when to make the transition between filter algorithms, which has outstanding power for detecting departures from normality. Experiments using low-dimensional models demonstrate that the approach has a significant value, especially for nonhomogeneous observation networks and unknown model process errors. Moreover, hybrid factors are extended to consider marginals of more than one collocated variables using a test for multivariate normality. Findings from this study motivate the use of the proposed method for geophysical problems characterized by diverse observation networks and various dynamic instabilities, such as numerical weather prediction models. Significance Statement Data assimilation statistically processes observation errors and model forecast errors to provide optimal initial conditions for the forecast, playing a critical role in numerical weather forecasting. The ensemble Kalman filter, which has been widely adopted and developed in many operational centers, assumes Gaussianity of the prior distribution and solves a linear system of equations, leading to bias in strong nonlinear regimes. On the other hand, particle filters avoid many of those assumptions but are sensitive to sampling errors and are computationally expensive. We propose an adaptive hybrid strategy that combines their advantages and minimizes the disadvantages of the two methods. The hybrid particle filter–ensemble Kalman filter is achieved with the Shapiro–Wilk test to detect the Gaussianity of the ensemble members and determine the timing of the transition between these filter updates. Demonstrations in this study show that the proposed method is advantageous when observations are heterogeneous and when the model has an unknown bias. Furthermore, by extending the statistical hypothesis test to the test for multivariate normality, we consider marginals of more than one collocated variable. These results encourage further testing for real geophysical problems characterized by various dynamic instabilities, such as real numerical weather prediction models. 
    more » « less
  2. Automotive systems have always been designed with safety in mind. In this regard, the functional safety standard, ISO 26262, was drafted with the intention of minimizing risk due to random hardware faults or systematic failure in design of electrical and electronic components of an automobile. However, growing complexity of a modern car has added another potential point of failure in the form of cyber or sensor attacks. Recently, researchers have demonstrated that vulnerability in vehicle's software or sensing units could enable them to remotely alter the intended operation of the vehicle. As such, in addition to safety, security should be considered as an important design goal. However, designing security solutions without the consideration of safety objectives could result in potential hazards. Consequently, in this paper we propose the notion of security for safety and show that by integrating safety conditions with our system-level security solution, which comprises of a modified Kalman filter and a Chi-squared detector, we can prevent potential hazards that could occur due to violation of safety objectives during an attack. Furthermore, with the help of a car-following case study, where the follower car is equipped with an adaptive-cruise control unit, we show that our proposed system-level security solution preserves the safety constraints and prevent collision between vehicle while under sensor attack. 
    more » « less
  3. We focus on robust estimation of the unobserved state of a discrete-time stochastic system with linear dynamics. A standard analysis of this estimation problem assumes a baseline innovation model; with Gaussian innovations we recover the Kalman filter. However, in many settings, there is insufficient or corrupted data to validate the baseline model. To cope with this problem, we minimize the worst-case mean-squared estimation error of adversarial models chosen within a Wasserstein neighborhood around the baseline. We also constrain the adversarial innovations to form a martingale difference sequence. The martingale constraint relaxes the i.i.d. assumptions which are often imposed on the baseline model. Moreover, we show that the martingale constraints guarantee that the adversarial dynamics remain adapted to the natural time-generated information. Therefore, adding the martingale constraint allows to improve upon over-conservative policies that also protect against unrealistic omniscient adversaries. We establish a strong duality result which we use to develop an efficient subgradient method to compute the distributionally robust estimation policy. If the baseline innovations are Gaussian, we show that the worst-case adversary remains Gaussian. Our numerical experiments indicate that the martingale constraint may also aid in adding a layer of robustness in the choice of the adversarial power. 
    more » « less
  4. In this work, we consider an LTI system with a Kalman filter, detector, and Linear Quadratic Gaussian (LQG) controller under false data injection attack. The interaction between the controller and adversary is captured by a Stackelberg game, in which the controller is the leader and the adversary is the follower. We propose a framework under which the system chooses time-varying detection thresholds to reduce the effectiveness of the attack and enhance the control performance. We model the impact of the detector as a switching signal, resulting in a switched linear system. A closed form solution for the optimal attack is first computed using the proposed framework, as the best response to any detection threshold. We then present a convex program to compute the optimal detection threshold. Our approach is evaluated using a numerical case study. 
    more » « less
  5. Intelligently designed false data injection (FDI) attacks have been shown to be able to bypass the chi-squared-test based bad data detector (BDD), resulting in physical consequences (such as line overloads) in the power system. In this paper, using synthetic PMU measurements and intelligently designed FDI attacks, it is shown that if an attack is suddenly injected into the system, a predictive filter with sufficient accuracy is able to detect it. However, an attacker can gradually increase the magnitude of the attack to avoid detection, and still cause damage to the system. 
    more » « less