skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Detection of Gaussian Attacks in Power Systems under a Scalable Kalman Consensus Filter Framework
The dynamic non-linear state-space model of a power-system consisting of synchronous generators, buses, and static loads has been linearized and a linear measurement function has been considered. A distributed dynamic framework for estimating the state vector of the power system has been designed here. This framework employs a type of distributed Kalman filter (DKF) known as a Kalman consensus filter (KCF) which is located at distributed control centers (DCCs) that fuse locally available noise ridden measurements, state vector estimates of neighboring control centers, and a prediction obtained by the linearized model to obtain a filtered state vector estimate. Further, the local residual at each control center is checked by a median chi-squared detector designed here for bad data/Gaussian attack detection. Simulation results show the working of the KCF for an 8 bus 5 generator system, and the efficacy of the median chi-squared detector in detecting the DCC affected by Gaussian attacks.  more » « less
Award ID(s):
1837472
PAR ID:
10299541
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2021 IEEE PES General Meeting
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Intelligently designed false data injection (FDI) attacks have been shown to be able to bypass the chi-squared-test based bad data detector (BDD), resulting in physical consequences (such as line overloads) in the power system. In this paper, using synthetic PMU measurements and intelligently designed FDI attacks, it is shown that if an attack is suddenly injected into the system, a predictive filter with sufficient accuracy is able to detect it. However, an attacker can gradually increase the magnitude of the attack to avoid detection, and still cause damage to the system. 
    more » « less
  2. Abstract In this paper we present the derivation of two new forms of the Kalman filter equations; the first is for a pure lognormally distributed random variable, while the second set of Kalman filter equations will be for a combination of Gaussian and lognormally distributed random variables. We show that the appearance is similar to that of the Gaussian-based equations, but that the analysis state is a multivariate median and not the mean. We also show results of the mixed distribution Kalman filter with the Lorenz 1963 model with lognormal errors for the background and observations of the z component, and compare them to analysis results from a traditional Gaussian-based extended Kalman filter and show that under certain circumstances the new approach produces more accurate results. 
    more » « less
  3. In this work, we consider an LTI system with a Kalman filter, detector, and Linear Quadratic Gaussian (LQG) controller under false data injection attack. The interaction between the controller and adversary is captured by a Stackelberg game, in which the controller is the leader and the adversary is the follower. We propose a framework under which the system chooses time-varying detection thresholds to reduce the effectiveness of the attack and enhance the control performance. We model the impact of the detector as a switching signal, resulting in a switched linear system. A closed form solution for the optimal attack is first computed using the proposed framework, as the best response to any detection threshold. We then present a convex program to compute the optimal detection threshold. Our approach is evaluated using a numerical case study. 
    more » « less
  4. Abstract Particle filters avoid parametric estimates for Bayesian posterior densities, which alleviates Gaussian assumptions in nonlinear regimes. These methods, however, are more sensitive to sampling errors than Gaussian-based techniques such as ensemble Kalman filters. A recent study by the authors introduced an iterative strategy for particle filters that match posterior moments—where iterations improve the filter’s ability to draw samples from non-Gaussian posterior densities. The iterations follow from a factorization of particle weights, providing a natural framework for combining particle filters with alternative filters to mitigate the impact of sampling errors. The current study introduces a novel approach to forming an adaptive hybrid data assimilation methodology, exploiting the theoretical strengths of nonparametric and parametric filters. At each data assimilation cycle, the iterative particle filter performs a sequence of updates while the prior sample distribution is non-Gaussian, then an ensemble Kalman filter provides the final adjustment when Gaussian distributions for marginal quantities are detected. The method employs the Shapiro–Wilk test to determine when to make the transition between filter algorithms, which has outstanding power for detecting departures from normality. Experiments using low-dimensional models demonstrate that the approach has a significant value, especially for nonhomogeneous observation networks and unknown model process errors. Moreover, hybrid factors are extended to consider marginals of more than one collocated variables using a test for multivariate normality. Findings from this study motivate the use of the proposed method for geophysical problems characterized by diverse observation networks and various dynamic instabilities, such as numerical weather prediction models. Significance Statement Data assimilation statistically processes observation errors and model forecast errors to provide optimal initial conditions for the forecast, playing a critical role in numerical weather forecasting. The ensemble Kalman filter, which has been widely adopted and developed in many operational centers, assumes Gaussianity of the prior distribution and solves a linear system of equations, leading to bias in strong nonlinear regimes. On the other hand, particle filters avoid many of those assumptions but are sensitive to sampling errors and are computationally expensive. We propose an adaptive hybrid strategy that combines their advantages and minimizes the disadvantages of the two methods. The hybrid particle filter–ensemble Kalman filter is achieved with the Shapiro–Wilk test to detect the Gaussianity of the ensemble members and determine the timing of the transition between these filter updates. Demonstrations in this study show that the proposed method is advantageous when observations are heterogeneous and when the model has an unknown bias. Furthermore, by extending the statistical hypothesis test to the test for multivariate normality, we consider marginals of more than one collocated variable. These results encourage further testing for real geophysical problems characterized by various dynamic instabilities, such as real numerical weather prediction models. 
    more » « less
  5. To perform power system monitoring and control using synchrophasor measurements, various dynamic state estimators have been proposed in the literature, including the extended Kalman filter (EKF) and the unscented Kalman filter (UKF). However, they are unable to handle system model parameter errors and any type of outliers, precluding them from being adopted for power system real-time applications. In this paper, we develop a robust iterated extended Kalman filter based on the generalized maximum likelihood approach (termed GM-IEKF) for dynamic state estimation. The proposed GM-IEKF can effectively suppress observation and innovation outliers, which may be induced by model parameter gross errors and cyber attacks. We assess its robustness by carrying out extensive simulations on the IEEE 39-bus test system. From the results, we find that the GM-IEKF is able to cope with at least 25% outliers, including in position of leverage. 
    more » « less