skip to main content


Title: Change theory in STEM higher education: a systematic review
Abstract This article systematically reviews how change theory has been used in STEM higher educational change between 1995 and 2019. Researchers are increasingly turning to theory to inform the design, implementation, and investigation of educational improvement efforts. Yet, efforts are often siloed by discipline and relevant change theory comes from diverse fields outside of STEM. Thus, there is a need to bring together work across disciplines to investigate which change theories are used and how they inform change efforts. This review is based on 97 peer-reviewed articles. We provide an overview of change theories used in the sample and describe how theory informed the rationale and assumptions of projects, conceptualizations of context, indicators used to determine if goals were met, and intervention design. This review points toward three main findings. Change research in STEM higher education almost always draws on theory about individual change, rather than theory that also attends to the system in which change takes place. Additionally, research in this domain often draws on theory in a superficial fashion, instead of using theory as a lens or guide to directly inform interventions, research questions, measurement and evaluation, data analysis, and data interpretation. Lastly, change researchers are not often drawing on, nor building upon, theories used in other studies. This review identified 40 distinct change theories in 97 papers. This lack of theoretical coherence in a relatively limited domain substantially limits our ability to build collective knowledge about how to achieve change. These findings call for more synthetic theoretical work; greater focus on diversity, equity, and inclusion; and more formal opportunities for scholars to learn about change and change theory.  more » « less
Award ID(s):
1830860
NSF-PAR ID:
10299551
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Journal of STEM Education
Volume:
8
Issue:
1
ISSN:
2196-7822
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Teachers, schools, districts, states, and technology developers endeavor to personalize learning experiences for students, but definitions of personalized learning (PL) vary and designs often span multiple components. Variability in definition and implementation complicate the study of PL and the ways that designs can leverage student characteristics to reliably achieve targeted learning outcomes. We document the diversity of definitions of PL that guide implementation in educational settings and review relevant educational theories that could inform design and implementation. We then report on a systematic review of empirical studies of personalized learning using PRISMA guidelines. We identified 376 unique studies that investigated one or more PL design features and appraised this corpus to determine (1) who studies personalized learning; (2) with whom, and in what contexts; and (3) with focus on what learner characteristics, instructional design approaches, and learning outcomes. Results suggest that PL research is led by researchers in education, computer science, engineering, and other disciplines, and that the focus of their PL designs differs by the learner characteristics and targeted outcomes they prioritize. We further observed that research tends to proceed without a priori theoretical conceptualization, but also that designs often implicitly align to assumptions posed by extant theories of learning. We propose that a theoretically guided approach to the design and study of PL can organize efforts to evaluate the practice, and forming an explicit theory of change can improve the likelihood that efforts to personalize learning achieve their aims. We propose a theory-guided method for the design of PL and recommend research methods that can parse the effects obtained by individual design features within the “many-to-many-to-many” designs that characterize PL in practice. 
    more » « less
  2. Introduction and Theoretical Frameworks Our study draws upon several theoretical foundations to investigate and explain the educational experiences of Black students majoring in ME, CpE, and EE: intersectionality, critical race theory, and community cultural wealth theory. Intersectionality explains how gender operates together with race, not independently, to produce multiple, overlapping forms of discrimination and social inequality (Crenshaw, 1989; Collins, 2013). Critical race theory recognizes the unique experiences of marginalized groups and strives to identify the micro- and macro-institutional sources of discrimination and prejudice (Delgado & Stefancic, 2001). Community cultural wealth integrates an asset-based perspective to our analysis of engineering education to assist in the identification of factors that contribute to the success of engineering students (Yosso, 2005). These three theoretical frameworks are buttressed by our use of Racial Identity Theory, which expands understanding about the significance and meaning associated with students’ sense of group membership. Sellers and colleagues (1997) introduced the Multidimensional Model of Racial Identity (MMRI), in which they indicated that racial identity refers to the “significance and meaning that African Americans place on race in defining themselves” (p. 19). The development of this model was based on the reality that individuals vary greatly in the extent to which they attach meaning to being a member of the Black racial group. Sellers et al. (1997) posited that there are four components of racial identity: 1. Racial salience: “the extent to which one’s race is a relevant part of one’s self-concept at a particular moment or in a particular situation” (p. 24). 2. Racial centrality: “the extent to which a person normatively defines himself or herself with regard to race” (p. 25). 3. Racial regard: “a person’s affective or evaluative judgment of his or her race in terms of positive-negative valence” (p. 26). This element consists of public regard and private regard. 4. Racial ideology: “composed of the individual’s beliefs, opinions and attitudes with respect to the way he or she feels that the members of the race should act” (p. 27). The resulting 56-item inventory, the Multidimensional Inventory of Black Identity (MIBI), provides a robust measure of Black identity that can be used across multiple contexts. Research Questions Our 3-year, mixed-method study of Black students in computer (CpE), electrical (EE) and mechanical engineering (ME) aims to identify institutional policies and practices that contribute to the retention and attrition of Black students in electrical, computer, and mechanical engineering. Our four study institutions include historically Black institutions as well as predominantly white institutions, all of which are in the top 15 nationally in the number of Black engineering graduates. We are using a transformative mixed-methods design to answer the following overarching research questions: 1. Why do Black men and women choose and persist in, or leave, EE, CpE, and ME? 2. What are the academic trajectories of Black men and women in EE, CpE, and ME? 3. In what way do these pathways vary by gender or institution? 4. What institutional policies and practices promote greater retention of Black engineering students? Methods This study of Black students in CpE, EE, and ME reports initial results from in-depth interviews at one HBCU and one PWI. We asked students about a variety of topics, including their sense of belonging on campus and in the major, experiences with discrimination, the impact of race on their experiences, and experiences with microaggressions. For this paper, we draw on two methodological approaches that allowed us to move beyond a traditional, linear approach to in-depth interviews, allowing for more diverse experiences and narratives to emerge. First, we used an identity circle to gain a better understanding of the relative importance to the participants of racial identity, as compared to other identities. The identity circle is a series of three concentric circles, surrounding an “inner core” representing one’s “core self.” Participants were asked to place various identities from a provided list that included demographic, family-related, and school-related identities on the identity circle to reflect the relative importance of the different identities to participants’ current engineering education experiences. Second, participants were asked to complete an 8-item survey which measured the “centrality” of racial identity as defined by Sellers et al. (1997). Following Enders’ (2018) reflection on the MMRI and Nigrescence Theory, we chose to use the measure of racial centrality as it is generally more stable across situations and best “describes the place race holds in the hierarchy of identities an individual possesses and answers the question ‘How important is race to me in my life?’” (p. 518). Participants completed the MIBI items at the end of the interview to allow us to learn more about the participants’ identification with their racial group, to avoid biasing their responses to the Identity Circle, and to avoid potentially creating a stereotype threat at the beginning of the interview. This paper focuses on the results of the MIBI survey and the identity circles to investigate whether these measures were correlated. Recognizing that Blackness (race) is not monolithic, we were interested in knowing the extent to which the participants considered their Black identity as central to their engineering education experiences. Combined with discussion about the identity circles, this approach allowed us to learn more about how other elements of identity may shape the participants’ educational experiences and outcomes and revealed possible differences in how participants may enact various points of their identity. Findings For this paper, we focus on the results for five HBCU students and 27 PWI students who completed the MIBI and identity circle. The overall MIBI average for HBCU students was 43 (out of a possible 56) and the overall MIBI scores ranged from 36-51; the overall MIBI average for the PWI students was 40; the overall MIBI scores for the PWI students ranged from 24-51. Twenty-one students placed race in the inner circle, indicating that race was central to their identity. Five placed race on the second, middle circle; three placed race on the third, outer circle. Three students did not place race on their identity circle. For our cross-case qualitative analysis, we will choose cases across the two institutions that represent low, medium and high MIBI scores and different ranges of centrality of race to identity, as expressed in the identity circles. Our final analysis will include descriptive quotes from these in-depth interviews to further elucidate the significance of race to the participants’ identities and engineering education experiences. The results will provide context for our larger study of a total of 60 Black students in engineering at our four study institutions. Theoretically, our study represents a new application of Racial Identity Theory and will provide a unique opportunity to apply the theories of intersectionality, critical race theory, and community cultural wealth theory. Methodologically, our findings provide insights into the utility of combining our two qualitative research tools, the MIBI centrality scale and the identity circle, to better understand the influence of race on the education experiences of Black students in engineering. 
    more » « less
  3. The purpose of this article is to explore how migration theory is invoked in empirical studies of climate-related migration, and to provide suggestions for engagement with theory in the emerging field of climate mobility. Theory is critical for understanding processes we observe in social-ecological systems because it points to a specific locus of attention for research, shapes research questions, guides quantitative model development, influences what researchers find, and ultimately informs policies and programs. Research into climate mobility has grown out of early studies on environmental migration, and has often developed in isolation from broader theoretical developments in the migration research community. As such, there is a risk that the work may be inadequately informed by the rich corpus of theory that has contributed to our understanding of who migrates; why they migrate; the types of mobility they employ; what sustains migration streams; and why they choose certain destinations over others. On the other hand, there are ways in which climate and broader environment migration research is enriching the conceptual frameworks being employed to understand migration, particularly forced migration. This paper draws on a review of 75 empirical studies and modeling efforts conducted by researchers from a diversity of disciplines, covering various regions, and using a variety of data sources and methods to assess how they used theory in their research. The goal is to suggest ways forward for engagement with migration theory in this large and growing research domain. 
    more » « less
  4. Engineers are called to play an important role in addressing the complex problems of our global society, such as climate change and global health care. In order to adequately address these complex problems, engineers must be able to identify and incorporate into their decision making relevant aspects of systems in which their work is contextualized, a skill often referred to as systems thinking. However, within engineering, research on systems thinking tends to emphasize the ability to recognize potentially relevant constituent elements and parts of an engineering problem, rather than how these constituent elements and parts are embedded in broader economic, sociocultural, and temporal contexts and how all of these must inform decision making about problems and solutions. Additionally, some elements of systems thinking, such as an awareness of a particular sociocultural context or the coordination of work among members of a cross-disciplinary team, are not always recognized as core engineering skills, which alienates those whose strengths and passions are related to, for example, engineering systems that consider and impact social change. Studies show that women and minorities, groups underrepresented within engineering, are drawn to engineering in part for its potential to address important social issues. Emphasizing the importance of systems thinking and developing a more comprehensive definition of systems thinking that includes both constituent parts and contextual elements of a system will help students recognize the relevance and value of these other elements of engineering work and support full participation in engineering by a diverse group of students. We provide an overview of our study, in which we are examining systems thinking across a range of expertise to develop a scenario-based assessment tool that educators and researchers can use to evaluate engineering students’ systems thinking competence. Consistent with the aforementioned need to define and study systems thinking in a comprehensive, inclusive manner, we begin with a definition of systems thinking as a holistic approach to problem solving in which linkages and interactions of the immediate work with constituent parts, the larger sociocultural context, and potential impacts over time are identified and incorporated into decision making. In our study, we seek to address two key questions: 1) How do engineers of different levels of education and experience approach problems that require systems thinking? and 2) How do different types of life, educational, and work experiences relate to individuals’ demonstrated level of expertise in solving systems thinking problems? Our study is comprised of three phases. The first two phases include a semi-structured interview with engineering students and professionals about their experiences solving a problem requiring systems thinking and a think-aloud interview in which participants are asked to talk through how they would approach a given engineering scenario and later reflect on the experiences that inform their thinking. Data from these two phases will be used to develop a written assessment tool, which we will test by administering the written instrument to undergraduate and graduate engineering students in our third study phase. Our paper describes our study design and framing and includes preliminary findings from the first phase of our study. 
    more » « less
  5. Background. While educational change often involves bold talk about disruptive ideas that eventually need to be institutionalized, a critical but often less visible element of sustaining change is work such as maintaining a shared vision, onboarding new people, negotiating small issues in light of department culture, and coordinating big changes with existing efforts. While knowledge about these forms of invisible work exist in other disciplines, these issues seem understudied in engineering education. This work approaches this issue of invisible knowledge with a design orientation, and specifically draws on the field of design-based research. Increasingly, design is recognized as a knowledge producing activity, resulting in insights into generative ways of defining problems, frameworks for generating solutions to problems, examples of what it looks like to connect theory to specific problems. Purpose: As a design effort, this work asks: How might a specific department create a sustainable practice to support the invisible work of coordinating and sustaining change? As a scholarly effort, this instance of design can result in a culminating problem definition, a solution framework, and examples of theory use that represent knowledge contributions. Approach: A mechanical engineering department in a small, private educational institution worked for four months to develop a sustainable practice to support invisible work of coordinating and sustaining change. Following an initial commitment of 60 minutes once every three weeks and 3-hour retreat to explore possibilities, the department then iteratively designed and then carried out sample conversations. Each iteration involved specifying the goals of the conversation, how to have the conversation (the design) and the rationale for connecting the design to the goals. Traces from the process represent the data for this work. Results. Over time, the conversations came to be designed along four dimensions: topic, time allocation, turn-taking, and traces. We have learned that topics that are of immediate relevance to everyone are particularly powerful (initial topics included "being back on campus" and "navigating in-person"). We are currently leveraging a time allocation that devotes the most time to hearing from each participant on the topic, then time for the group to cautiously explore synthesis, and finally time for the group to weigh in on future conversation topics. Approaches to turn-taking have involved decentralization (e.g., each current speaker invites the next speaker) and respect (speakers have a chance to "pass" and then choose the next speaker). Finally, we are experimenting with how to balance the creation of traces as a natural part of the process, such as through real-time transcription in the chat feature of zoom. Undergirding each of these dimensions are connections to the intended goals, connections to relevant theory, and connections to the long-term goal of sustainability. In presenting these ideas, we will focus on how the information being offered connects to the current body of knowledge in engineering education. Conclusion. It is promising to treat the work of department culture as a design problem. The ideas in this framework may serve as inspiration to others seeking to create their own sustainable mechanisms but with different conditions. During the winter and spring of 2022, the approach will be additionally tested via six deployments, and insights will be shared in subsequent publications. 
    more » « less