The photophysics of thiobases—nucleobases in which one or more oxygen atoms are replaced with sulfur atoms— vary greatly depending on the location of sulfonation. Not only are direct dynamics of a neutral thiobase impacted, but also the dynamics of excess electron accommodation. In this work, time-resolved photoelectron spectroscopy is used to measure binary anionic clusters of iodide and 4-thiouracil, I− · 4TU. We investigate charge transfer dynamics driven by excitation at 3.88 eV, corresponding to the lowest ππ* transition of the thiouracil, and at 4.16 eV, near the cluster vertical detachment energy. The photoexcited state dynamics are probed by photodetachment with 1.55 and 3.14 eV pulses. Excitation at 3.88 eV leads to a signal from a valence-bound ion only, indicating a charge accommodation mechanism that does not involve a dipole-bound anion as an intermediate. Excitation at 4.16 eV rapidly gives rise to dipole-bound and valence-bound ion signals, with a second rise in the valence-bound signal corresponding to the decay of the dipole-bound signal. The dynamics associated with the low energy ππ* excitation of 4-thiouracil provide a clear experimental proof for the importance of localized excitation and electron backfilling in halide–nucleobase clusters.
more »
« less
Time-resolved radiation chemistry: femtosecond photoelectron spectroscopy of electron attachment and photodissociation dynamics in iodide–nucleobase clusters
Iodide–nucleobase (I − ·N) clusters studied by time-resolved photoelectron spectroscopy (TRPES) are an opportune model system for examining radiative damage of DNA induced by low-energy electrons. By initiating charge transfer from iodide to the nucleobase and following the dynamics of the resulting transient negative ions (TNIs) with femtosecond time resolution, TRPES provides a novel window into the chemistry triggered by the attachment of low-energy electrons to nucleobases. In this Perspective, we examine and compare the dynamics of electron attachment, autodetachment, and photodissociation in a variety of I − ·N clusters, including iodide–uracil (I − ·U), iodide–thymine (I − ·T), iodide–uracil–water (I − ·U·H 2 O), and iodide–adenine (I − ·A), to develop a more unified representation of our understanding of nucleobase TNIs. The experiments probe whether dipole-bound or valence-bound TNIs are formed initially and the subsequent time evolution of these species. We also provide an outlook for forthcoming applications of TRPES to larger iodide-containing complexes to enable the further investigation of microhydration dynamics in nucleobases, as well as electron attachment and photodissociation in more complex nucleic acid constituents.
more »
« less
- Award ID(s):
- 1663832
- PAR ID:
- 10299681
- Date Published:
- Journal Name:
- Physical Chemistry Chemical Physics
- Volume:
- 21
- Issue:
- 14
- ISSN:
- 1463-9076
- Page Range / eLocation ID:
- 7239 to 7255
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The gas-phase conformations of the protonated forms of thymidine-5′-monophosphate and uridine-5′-monophosphate, [pdThd+H] + and [pUrd+H] + , are investigated by infrared multiple photon dissociation (IRMPD) action spectroscopy and electronic structure calculations. The IRMPD action spectra of [pdThd+H] + and [pUrd+H] + are measured over the IR fingerprint and hydrogen-stretching regions using the FELIX free electron laser and an OPO/OPA laser system. Low-energy conformations of [pdThd+H] + and [pUrd+H] + and their relative stabilities are computed at the MP2(full)/6-311+G(2d,2p)//B3LYP/6-311+G(d,p) and B3LYP/6-311+G(2d,2p)//B3LYP/6-311+G(d,p) levels of theory. Comparisons of the measured IRMPD action spectra and B3LYP/6-311+G(d,p) linear IR spectra computed for the low-energy conformers indicate that the dominant conformers of [pdThd+H] + and [pUrd+H] + populated in the experiments are protonated at the phosphate oxo oxygen atom, with a syn nucleobase orientation that is stabilized by strong POH + ⋯O2 and P–OH⋯O4′ hydrogen-bonding interactions, and C2′- endo sugar puckering. Minor abundance of conformers protonated at the O2 carbonyl of the nucleobase residue may also contribute for [pdThd+H] + , but do not appear to be important for [pUrd+H] + . Comparisons to previous IRMPD spectroscopy investigations of the protonated forms of thymidine and uridine, [dThd+H] + and [Urd+H] + , and the deprotonated forms of pdThd and pUrd, [pdThd−H] − and [pUrd−H] − , provide insight into the effects of the phosphate moiety and protonation on the conformational features of the nucleobase and sugar moieties. Most interestingly, the thymine and uracil nucleobases remain in their canonical forms for [pdThd+H] + and [pUrd+H] + , unlike [dThd+H] + and [Urd+H] + , where protonation occurs on the nucleobases and induces tautomerization of the thymine and uracil residues.more » « less
-
We investigate attachment of slow electrons (0–10 eV) to naphthalene (Np) clusters in a crossed beam experiment. Supersonic expansions under different conditions using different buffer gases generate the clusters: in He, Ne, and low pressure Ar, neat (Np)N clusters are formed, while we also observe mixed clusters of naphthalene with rare-gas atoms in co-expansion with Ar above 0.5 bar and with Kr. Negatively charged (Np)n− and Rgm(Np)n− (Rg = Ar, Kr) clusters are analyzed by mass spectrometry, and electron energy dependent ion yields are measured. We show that the smallest stable naphthalene complex with an excess electron, the dimer (Np)2− anion, cannot be formed in a binary collision of a free electron with (Np)2 dimer, nor with (Np)3 trimer. Evaporation of a weakly bound Ar atom(s) from a mixed ArM(Np)2 cluster following electron attachment leads to the dimer (Np)2− anion. Larger (Np)n−, n > 3, transient cluster anions decay via evaporation of an Np unit on a timescale of tens of microseconds. The self-scavenging process opens around 6 eV, where a naphthalene unit is electronically excited by the incoming electron, which is slowed down and trapped. However, the transient negative ion is efficiently stabilized only in the mixed clusters, from which Ar atom(s) can be evaporated.more » « less
-
The photophysical properties of 2,4-dithiouracil (2,4-DTU) in the gas phase are studied by time-resolved photoelectron spectroscopy (TRPES) with three different excitation wavelengths in direct extension of previous work on uracil (U), 2-thiouracil (2-TU) and 4-thiouracil (4-TU). Non-radiative deactivation in the canonical nucleobases like uracil mainly occurs via internal conversion (IC) along singlet excited states, although intersystem crossing (ISC) to a long-lived triplet state was confirmed to play a minor role. In thionated uracils, ISC to the triplet state becomes ultrafast and highly efficient with a quantum yield near unity; however, the lifetime of the triplet state is strongly dependent on the position of the sulfur atom. In 2-TU, ISC back to the ground state occurs within a few hundred picoseconds, whereas the population remains trapped in the lowest triplet state in the case of 4-TU. Upon doubling the degree of thionation, ISC remains highly efficient and dominates the photophysics of 2,4-DTU. However, several low-lying excited states contribute to competing IC and ISC pathways and a complex deactivation mechanism, which is evaluated here based on TRPES measurements and discussed in the context of the singly thionated uracils.more » « less
-
Time-resolved photoelectron spectroscopy (TRPES) signals that monitor the relaxation of the RNA base uracil upon optical excitation are simulated. Distinguishable signatures of coherence dynamics at conical intersections are identified, with temporal and spectral resolutions determined by the duration of the ionizing probe pulse. The frequency resolution of the technique, either directly provided by the signal or retrieved at the data-processing stage, can magnify the contribution from molecular coherences, enabling the extraction of most valuable information about the nonadiabatic molecular dynamics. The predicted coherence signatures in TRPES could be experimentally observed with existing ultrashort pulses from high-order harmonic generation or free-electron lasers.more » « less
An official website of the United States government

