Forest ecosystems are important global soil carbon (C) reservoirs, but their capacity to sequester C is susceptible to climate change factors that alter the quantity and quality of C inputs. To better understand forest soil C responses to altered C inputs, we integrated three molecular composition published data sets of soil organic matter (SOM) and soil microbial communities for mineral soils after 20 years of detrital input and removal treatments in two deciduous forests: Bousson Forest (BF), Harvard Forest (HF), and a coniferous forest: H.J. Andrews Forest (HJA). Soil C turnover times were estimated from radiocarbon measurements and compared with the molecular‐level data (based on nuclear magnetic resonance and specific analysis of plant‐ and microbial‐derived compounds) to better understand how ecosystem properties control soil C biogeochemistry and dynamics. Doubled aboveground litter additions did not increase soil C for any of the forests studied likely due to long‐term soil priming. The degree of SOM decomposition was higher for bacteria‐dominated sites with higher nitrogen (N) availability while lower for the N‐poor coniferous forest. Litter exclusions significantly decreased soil C, increased SOM decomposition state, and led to the adaptation of the microbial communities to changes in available substrates. Finally, although aboveground litter determined soil C dynamics and its molecular composition in the coniferous forest (HJA), belowground litter appeared to be more influential in broadleaf deciduous forests (BH and HF). This synthesis demonstrates that inherent ecosystem properties regulate how soil C dynamics change with litter manipulations at the molecular‐level. Across the forests studied, 20 years of litter additions did not enhance soil C content, whereas litter reductions negatively impacted soil C concentrations. These results indicate that soil C biogeochemistry at these temperate forests is highly sensitive to changes in litter deposition, which are a product of environmental change drivers.
more »
« less
Competing Processes Drive the Resistance of Soil Carbon to Alterations in Organic Inputs
Protecting existing soil carbon (C) and harnessing the C sequestration potential of soils require an improved understanding of the processes through which soil organic matter accumulates in natural systems. Currently, competing hypotheses exist regarding the dominant mechanisms for soil C stabilization. Many long-standing hypotheses revolve around an assumed positive relationship between the quantity of organic inputs and soil C accumulation, while more recent hypotheses have shifted attention toward the complex controls of microbial processing and organo-mineral complexation. Here, we present the observed findings of soil response to 20 years of detrital manipulations in the wet, temperate forest of the H.J. Andrews Experimental Station. Annual additions of low-quality (high C:N content) wood litter to the soil surface led to a greater positive effect on observed mean soil C concentration relative to additions of higher-quality (low C:N content) needle litter over the 20-year study period. However, high variability in measurements of soil C led to a statistically non-significant difference in C concentration between the two treatments and the control soil. The observed soil C responses to these two addition treatments demonstrates the long timescale and potential magnitude of soil C responses to management or disturbance led changes in forest litter input composition. Detrital input reduction treatments, including cutting off live root activity and the aboveground removal of surface litter, led to relatively small, non-significant effects on soil C concentrations over the 20-year study period. Far greater negative effects on mean soil C concentrations were observed for the combined removal of both aboveground litter and belowground root activity, which led to an observed, yet also non-significant, 20% decline in soil C stocks. The substantial proportion of remaining soil C following these dramatic, long-term reductions in above- and belowground detrital inputs suggests that losses of C in these forest soils are not readily achieved over a few decades of reductions in detrital input and may require far greater periods of time or further perturbations to the environment. Further, the observed soil C responses to detrital manipulations support recent hypotheses regarding soil C stabilization, which emphasize litter quality and mineral stabilization as relevant controls over forest soil C.
more »
« less
- Award ID(s):
- 2025755
- PAR ID:
- 10299697
- Date Published:
- Journal Name:
- Frontiers in Environmental Science
- Volume:
- 9
- ISSN:
- 2296-665X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Can models adequately reflect how long-term nitrogen enrichment alters the forest soil carbon cycle?Abstract. Changes in the nitrogen (N) status of forest ecosystems can directly and indirectly influence their carbon (C) sequestration potential by altering soil organic matter (SOM) decomposition, soil enzyme activity, and plant–soil interactions. However, model representations of linked C–N cycles and SOM decay are not well validated against experimental data. Here, we use extensive data from the Fernow Experimental Forest long-term whole-watershed N fertilization study to compare the response to N perturbations of two soil models that represent decomposition dynamics differently (first-order decay versus microbially explicit reverse Michaelis–Menten kinetics). These two soil models were coupled to a common vegetation model which provided identical input data. Key responses to N additions measured at the study site included a shift in plant allocation to favor woody biomass over belowground carbon inputs, reductions in soil respiration, accumulation of particulate organic matter (POM), and an increase in soil C:N ratios. The vegetation model did not capture the often-observed shift in plant C allocation with N additions, which resulted in poor predictions of the soil responses. We modified the parameterization of the plant C allocation scheme to favor wood production over fine-root production with N additions, which significantly improved the vegetation and soil respiration responses. Additionally, to elicit an increase in the soil C stocks and C:N ratios with N additions, as observed, we modified the decay rates of the POM in the soil models. With these modifications, both models captured negative soil respiration and positive soil C stock responses in line with observations, but only the microbially explicit model captured an increase in soil C:N. Our results highlight the need for further model development to accurately represent plant–soil interactions, such as rhizosphere priming, and their responses to environmental change.more » « less
-
Declining nitrogen (N) availability relative to plant demand, known as N oligotrophication, is a widespread phenomenon that has been particularly well documented in northern hardwood forests of the northeast U.S. It is hypothesized that later fall senescence contributes to this trend by increasing tree resorption of N, resulting in higher carbon:nitrogen ratios (C:N) in litterfall and reduced N availability in soil. To examine the effects of litterfall C:N on soil N cycling, we conducted a litter quality manipulation experiment comparing low C:N and high C:N litter with native litter along an elevation and aspect gradient at Hubbard Brook Experimental Forest, NH, USA. We found that potential net ammonification and mineralization rates were positively correlated with litter N and negatively correlated with litter C:N under high C:N litter, but these relationships were not present under native or low C:N litter. Differences in nitrate pools and net mineralization rates between high- and low-quality litter treatments were greater at colder sites where native litterfall tends to have lower C:N than at low elevation sites. Together, these results demonstrate that higher C:N litter and a warming climate likely contribute to N oligotrophication through effects on microbially driven N cycling rates in organic soils. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station.more » « less
-
Declining nitrogen (N) availability relative to plant demand, known as N oligotrophication, is a widespread phenomenon that has been particularly well documented in northern hardwood forests of the northeast U.S. It is hypothesized that later fall senescence contributes to this trend by increasing tree resorption of N, resulting in higher carbon:nitrogen ratios (C:N) in litterfall and reduced N availability in soil. To examine the effects of litterfall C:N on soil N cycling, we conducted a litter quality manipulation experiment comparing low C:N and high C:N litter with native litter along an elevation and aspect gradient at Hubbard Brook Experimental Forest, NH, USA. We found that potential net ammonification and mineralization rates were positively correlated with litter N and negatively correlated with litter C:N under high C:N litter, but these relationships were not present under native or low C:N litter. Differences in nitrate pools and net mineralization rates between high- and low-quality litter treatments were greater at colder sites, where native litterfall tends to have lower C:N than at low-elevation sites. Together, these results demonstrate that higher C:N litter and a warming climate may contribute to N oligotrophication through effects on microbially driven N cycling rates in organic soils.more » « less
-
Abstract Planting diverse forests has been proposed as a means to increase long‐term carbon (C) sequestration while providing many co‐benefits. Positive tree diversity–productivity relationships are well established, suggesting more diverse forests will lead to greater aboveground C sequestration. However, the effects of tree diversity on belowground C storage have the potential to either complement or offset aboveground gains, especially during early stages of afforestation when potential exists for large losses in soil C due to soil decomposition. Thus, experimental tests of the effects of planted tree biodiversity on changes in whole‐ecosystem C balance are needed. Here, we present changes in above‐ and belowground C pools 6 years after the initiation of the Forests and Biodiversity experiment (FAB1), consisting of high‐density plots of one, two, five, or 12 tree species planted in a common garden. The trees included a diverse range of native species, including both needle‐leaf conifer and broadleaf angiosperm species, and both ectomycorrhizal and arbuscular mycorrhizal species. We quantified the effects of species richness, phylogenetic diversity, and functional diversity on aboveground woody C, as well as on mineral soil C accumulation, fine root C, and soil aggregation. Surprisingly, changes in aboveground woody C pools were uncorrelated to changes in mineral soil C pools, suggesting that variation in soil C accumulation was not driven by the quantity of plant litter inputs. Aboveground woody C accumulation was strongly driven by species and functional identity; however, plots with higher species richness and functional diversity accumulated more C in aboveground wood than expected based on monocultures. We also found weak but significant effects of tree species richness, identity, and mycorrhizal type on soil C accumulation. To assess the role of the microbial community in mediating these effects, we further compared changes in soil C pools to phospholipid fatty acid (PLFA) profiles. Soil C pools and accumulation were more strongly correlated with specific microbial clades than with total microbial biomass or plant diversity. Our results highlight rapidly emerging and microbially mediated effects of tree biodiversity on soil C storage in the early years of afforestation that are independent of gains in aboveground woody biomass.more » « less
An official website of the United States government

