skip to main content


Title: The Recent Emergence of Arctic Amplification
Abstract

Arctic Amplification is robustly seen in climate model simulations of future warming and in the paleoclimate record. Here, we focus on the past century of observations. We show that Arctic Amplification is only a recent phenomenon, and that for much of this period the Arctic cooled while the global‐mean temperature rose. To investigate why this occurred, we analyze large ensembles of comprehensive climate model simulations under different forcing scenarios. Our results suggest that the global warming from greenhouse gases was largely offset in the Arctic by regional cooling due to aerosols, with internal climate variability also contributing to Arctic cooling and global warming trends during this period. This suggests that the disruption of Arctic Amplification was due to a combination of factors unique to the 20th century, and that enhanced Arctic warming should be expected to be a consistent feature of climate change over the coming century.

 
more » « less
Award ID(s):
1643445
NSF-PAR ID:
10359933
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
15
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Future Arctic sea ice loss has a known impact on Arctic amplification (AA) and mean atmospheric circulation. Furthermore, several studies have shown it leads to a decreased variance in temperature over North America. In this study, we analyze results from two fully coupled Community Earth System Model (CESM) Whole Atmosphere Community Climate Model (WACCM4) simulations with sea ice nudged to either the ensemble mean of WACCM historical runs averaged over the 1980–99 period for the control (CTL) or projected RCP8.5 values over the 2080–99 period for the experiment (EXP). Dominant large-scale meteorological patterns (LSMPs) are then identified using self-organizing maps applied to winter daily 500-hPa geopotential height anomalies () over North America. We investigate how sea ice loss (EXP − CTL) impacts the frequency of these LSMPs and, through composite analysis, the sensible weather associated with them. We find differences in LSMP frequency but no change in residency time, indicating there is no stagnation of the flow with sea ice loss. Sea ice loss also acts to de-amplify and/or shift thethat characterize these LSMPs and their associated anomalies in potential temperature at 850 hPa. Impacts on precipitation anomalies are more localized and consistent with changes in anomalous sea level pressure. With this LSMP framework we provide new mechanistic insights, demonstrating a role for thermodynamic, dynamic, and diabatic processes in sea ice impacts on atmospheric variability. Understanding these processes from a synoptic perspective is critical as some LSMPs play an outsized role in producing the mean response to Arctic sea ice loss.

    Significance Statement

    The goal of this study is to understand how future Arctic sea ice loss might impact daily weather patterns over North America. We use a global climate model to produce one set of simulations where sea ice is similar to present conditions and another that represents conditions at the end of the twenty-first century. Daily patterns in large-scale circulation at roughly 5.5 km in altitude are then identified using a machine learning method. We find that sea ice loss tends to de-amplify these patterns and their associated impacts on temperature nearer the surface. Our methodology allows us to probe more deeply into the mechanisms responsible for these changes, which provides a new way to understand how sea ice loss can impact the daily weather we experience.

     
    more » « less
  2. Abstract

    The recent Arctic sea ice loss is a key driver of the amplified surface warming in the northern high latitudes, and simultaneously a major source of uncertainty in model projections of Arctic climate change. Previous work has shown that the spread in model predictions of future Arctic amplification (AA) can be traced back to the inter-model spread in simulated long-term sea ice loss. We demonstrate that the strength of future AA is further linked to the current climate’s, observable sea ice state across the multi-model ensemble of the 6th Coupled Model Intercomparison Project (CMIP6). The implication is that the sea-ice climatology sets the stage for long-term changes through the 21st century, which mediate the degree by which Arctic warming is amplified with respect to global warming. We determine that a lower base-climate sea ice extent and sea ice concentration (SIC) in CMIP6 models enable stronger ice melt in both future climate and during the seasonal cycle. In particular, models with lower Arctic-mean SIC project stronger future ice loss and a more intense seasonal cycle in ice melt and growth. Both processes systemically link to a larger future AA across climate models. These results are manifested by the role of climate feedbacks that have been widely identified as major drivers of AA. We show in particular that models with low base-climate SIC predict a systematically stronger warming contribution through both sea-ice albedo feedback and temperature feedbacks in the future, as compared to models with high SIC. From our derived linear regressions in conjunction with observations, we estimate a 21st-century AA over sea ice of 2.47–3.34 with respect to global warming. Lastly, from the tight relationship between base-climate SIC and the projected timing of an ice-free September, we predict a seasonally ice-free Arctic by mid-century under a high-emission scenario.

     
    more » « less
  3. Abstract Observations show increases in river discharge to the Arctic Ocean especially in winter over the last decades but the physical mechanisms driving these changes are not yet fully understood. We hypothesize that even in the absence of a precipitation increase, permafrost degradation alone can lead to increased annual river runoff. To test this hypothesis we perform 12 millennium-long simulations over an idealized hypothetical watershed (1 km 2 ) using a distributed, physically based water balance model (Water flow and Balance Simulation Model, WaSiM). The model is forced by both a hypothetical warming defined by an air temperature increase of 7.5 ∘ C over 100 years, and a corresponding cooling scenario. To assess model sensitivity we vary soil saturated hydraulic conductivity and lateral subsurface flow configuration. Under the warming scenario, changes in subsurface water transport due to ground temperature changes result in a 7%–14% increase in annual runoff accompanied by a 6%–20% decrease in evapotranspiration. The increase in runoff is most pronounced in winter. Hence, the simulations demonstrate that changes in permafrost characteristics due to climate warming and associated changes in evapotranspiration provide a plausible mechanism for the observed runoff increases in Arctic watersheds. In addition, our experiments show that when lateral subsurface moisture transport is not included, as commonly done in global-scale Earth System Models, the equilibrium water balance in response to the warming or cooling is similar to the water balance in simulations where lateral subsurface transport is included. However, the transient changes in water balance components prior to reaching equilibrium differ greatly between the two. For example, for high saturated hydraulic conductivity only when lateral subsurface transport is considered, a period of decreased runoff occurs immediately after the warming. This period is characterized by a positive change in soil moisture storage caused by the soil moisture deficit developed during prior cooling. 
    more » « less
  4. Abstract

    Arctic Ocean warming and sea ice loss are closely linked to increased ocean heat transport (OHT) into the Arctic and changes in surface heat fluxes. To quantitatively assess their respective roles, we use the 100-member Community Earth System Model, version 2 (CESM2), Large Ensemble over the 1920–2100 period. We first examine the Arctic Ocean warming in a heat budget framework by calculating the contributions from heat exchanges with atmosphere and sea ice and OHT across the Arctic Ocean gateways. Then we quantify how much anomalous heat from the ocean directly translates to sea ice loss and how much is lost to the atmosphere. We find that Arctic Ocean warming is driven primarily by increased OHT through the Barents Sea Opening, with additional contributions from the Fram Strait and Bering Strait OHTs. These OHT changes are driven mainly by warmer inflowing water rather than changes in volume transports across the gateways. The Arctic Ocean warming driven by OHT is partially damped by increased heat loss through the sea surface. Although absorbed shortwave radiation increases due to reduced surface albedo, this increase is compensated by increasing upwelling longwave radiation and latent heat loss. We also explicitly calculate the contributions of ocean–ice and atmosphere–ice heat fluxes to sea ice heat budget changes. Throughout the entire twentieth century as well as the early twenty-first century, the atmosphere is the main contributor to ice heat gain in summer, though the ocean’s role is not negligible. Over time, the ocean progressively becomes the main heat source for the ice as the ocean warms.

    Significance Statement

    Arctic Ocean warming and sea ice loss are closely linked to increased ocean heat transport (OHT) into the Arctic and changes in surface heat fluxes. Here we use 100 simulations from the same climate model to analyze future warming and sea ice loss. We find that Arctic Ocean warming is primarily driven by increased OHT through the Barents Sea Opening, though the Fram and Bering Straits are also important. This increased OHT is primarily due to warmer inflowing water rather than changing ocean currents. This ocean heat gain is partially compensated by heat loss through the sea surface. During the twentieth century and early twenty-first century, sea ice loss is mainly linked to heat transferred from the atmosphere; however, over time, the ocean progressively becomes the most important contributor.

     
    more » « less
  5. Abstract

    The effect of future Arctic amplification (AA) on the extratropical atmospheric circulation remains unclear in modeling studies. Using a collection of coordinated atmospheric and coupled global climate model perturbation experiments, we find an emergent relationship between the high‐latitude 1,000–500 hPa thickness response and an enhancement of the Siberian High in winter. This wave number‐1‐like sea level pressure anomaly pattern is linked to an equatorward shift of the eddy‐driven jet and a dynamical cooling response in eastern Asia. Additional simulations, where AA is imposed directly into the model domain by nudging, demonstrate how the sea ice forcing is insufficient by itself to capture the vertical extent of the warming and by extension the amplitude of the response in the Siberian High. This study demonstrates the importance of the vertical extent of the tropospheric warming over the polar cap in revealing the “warm Arctic, cold Siberia” anomaly pattern in future projections.

     
    more » « less