skip to main content


Title: Quantum erasing the memory of Wigner's friend
The Wigner's friend paradox concerns one of the most puzzling problems of quantum mechanics: the consistent description of multiple nested observers. Recently, a variation of Wigner's gedankenexperiment, introduced by Frauchiger and Renner, has lead to new debates about the self-consistency of quantum mechanics. At the core of the paradox lies the description of an observer and the object it measures as a closed system obeying the Schrödinger equation. We revisit this assumption to derive a necessary condition on a quantum system to behave as an observer. We then propose a simple single-photon interferometric setup implementing Frauchiger and Renner's scenario, and use the derived condition to shed a new light on the assumptions leading to their paradox. From our description, we argue that the three apparently incompatible properties used to question the consistency of quantum mechanics correspond to two logically distinct contexts: either one assumes that Wigner has full control over his friends' lab, or conversely that some parts of the labs remain unaffected by Wigner's subsequent measurements. The first context may be seen as the quantum erasure of the memory of Wigner's friend. We further show these properties are associated with observables which do not commute, and therefore cannot take well-defined values simultaneously. Consequently, the three contradictory properties never hold simultaneously.  more » « less
Award ID(s):
1809343
NSF-PAR ID:
10299786
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Quantum
Volume:
5
ISSN:
2521-327X
Page Range / eLocation ID:
498
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract Black hole event horizons and cosmological event horizons share many properties, making it natural to ask whether our recent advances in understanding black holes generalize to cosmology. To this end, we discuss a paradox that occurs if observers can access what lies beyond their cosmological horizon in the same way that they can access what lies beyond a black hole horizon. In particular, distinct observers with distinct horizons may encode the same portion of spacetime, violating the no-cloning theorem of quantum mechanics. This paradox is due precisely to the observer-dependence of the cosmological horizon — the sharpest difference from a black hole horizon — although we will argue that the gravity path integral avoids the paradox in controlled examples. 
    more » « less
  2. Abstract Indistinguishability of particles is a fundamental principle of quantum mechanics 1 . For all elementary and quasiparticles observed to date—including fermions, bosons and Abelian anyons—this principle guarantees that the braiding of identical particles leaves the system unchanged 2,3 . However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotations in a space of topologically degenerate wavefunctions 4–8 . Hence, it can change the observables of the system without violating the principle of indistinguishability. Despite the well-developed mathematical description of non-Abelian anyons and numerous theoretical proposals 9–22 , the experimental observation of their exchange statistics has remained elusive for decades. Controllable many-body quantum states generated on quantum processors offer another path for exploring these fundamental phenomena. Whereas efforts on conventional solid-state platforms typically involve Hamiltonian dynamics of quasiparticles, superconducting quantum processors allow for directly manipulating the many-body wavefunction by means of unitary gates. Building on predictions that stabilizer codes can host projective non-Abelian Ising anyons 9,10 , we implement a generalized stabilizer code and unitary protocol 23 to create and braid them. This allows us to experimentally verify the fusion rules of the anyons and braid them to realize their statistics. We then study the prospect of using the anyons for quantum computation and use braiding to create an entangled state of anyons encoding three logical qubits. Our work provides new insights about non-Abelian braiding and, through the future inclusion of error correction to achieve topological protection, could open a path towards fault-tolerant quantum computing. 
    more » « less
  3. Quantum reference frames are expected to differ from classical reference frames because they have to implement typical quantum features such as fluctuations and correlations. Here, we show that fluctuations and correlations of reference variables, in particular of time, are restricted by their very nature of being used for reference. Mathematically, this property is implemented by imposing constraints on the system to make sure that reference variables are not physical degrees of freedom. These constraints not only relate physical degrees of freedom to reference variables in order to describe their behavior, they also restrict quantum fluctuations of reference variables and their correlations with system degrees of freedom. We introduce the notion of “almost-positive” states as a suitable mathematical method. An explicit application of their properties to examples of recent interest in quantum reference frames reveals previously unrecognized restrictions on possible frame–system interactions. While currently discussed clock models rely on assumptions that, as shown here, make them consistent as quantum reference frames, relaxing these assumptions will expose the models to new restrictions that appear to be rather strong. Almost-positive states also shed some light on a recent debate about the consistency of relational quantum mechanics. 
    more » « less
  4. Time-dependent density functional theory (TDDFT) based approaches have been developed in recent years to model the excited-state properties and transition processes of the molecules in the gas-phase and in a condensed medium, such as in a solution and protein microenvironment or near semiconductor and metal surfaces. In the latter case, usually, classical embedding models have been adopted to account for the molecular environmental effects, leading to the multi-scale approaches of TDDFT/polarizable continuum model (PCM) and TDDFT/molecular mechanics (MM), where a molecular system of interest is designated as the quantum mechanical region and treated with TDDFT, while the environment is usually described using either a PCM or (non-polarizable or polarizable) MM force fields. In this Perspective, we briefly review these TDDFT-related multi-scale models with a specific emphasis on the implementation of analytical energy derivatives, such as the energy gradient and Hessian, the nonadiabatic coupling, the spin–orbit coupling, and the transition dipole moment as well as their nuclear derivatives for various radiative and radiativeless transition processes among electronic states. Three variations of the TDDFT method, the Tamm–Dancoff approximation to TDDFT, spin–flip DFT, and spin-adiabatic TDDFT, are discussed. Moreover, using a model system (pyridine–Ag 20 complex), we emphasize that caution is needed to properly account for system–environment interactions within the TDDFT/MM models. Specifically, one should appropriately damp the electrostatic embedding potential from MM atoms and carefully tune the van der Waals interaction potential between the system and the environment. We also highlight the lack of proper treatment of charge transfer between the quantum mechanics and MM regions as well as the need for accelerated TDDFT modelings and interpretability, which calls for new method developments. 
    more » « less
  5. We give two new quantum algorithms for solving semidefinite programs (SDPs) providing quantum speed-ups. We consider SDP instances with m constraint matrices, each of dimension n, rank at most r, and sparsity s. The first algorithm assumes an input model where one is given access to an oracle to the entries of the matrices at unit cost. We show that it has run time O~(s^2 (sqrt{m} epsilon^{-10} + sqrt{n} epsilon^{-12})), with epsilon the error of the solution. This gives an optimal dependence in terms of m, n and quadratic improvement over previous quantum algorithms (when m ~~ n). The second algorithm assumes a fully quantum input model in which the input matrices are given as quantum states. We show that its run time is O~(sqrt{m}+poly(r))*poly(log m,log n,B,epsilon^{-1}), with B an upper bound on the trace-norm of all input matrices. In particular the complexity depends only polylogarithmically in n and polynomially in r. We apply the second SDP solver to learn a good description of a quantum state with respect to a set of measurements: Given m measurements and a supply of copies of an unknown state rho with rank at most r, we show we can find in time sqrt{m}*poly(log m,log n,r,epsilon^{-1}) a description of the state as a quantum circuit preparing a density matrix which has the same expectation values as rho on the m measurements, up to error epsilon. The density matrix obtained is an approximation to the maximum entropy state consistent with the measurement data considered in Jaynes' principle from statistical mechanics. As in previous work, we obtain our algorithm by "quantizing" classical SDP solvers based on the matrix multiplicative weight update method. One of our main technical contributions is a quantum Gibbs state sampler for low-rank Hamiltonians, given quantum states encoding these Hamiltonians, with a poly-logarithmic dependence on its dimension, which is based on ideas developed in quantum principal component analysis. We also develop a "fast" quantum OR lemma with a quadratic improvement in gate complexity over the construction of Harrow et al. [Harrow et al., 2017]. We believe both techniques might be of independent interest. 
    more » « less