skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Discovery of Drug-Like Ligands for the Mac1 Domain of SARS-CoV-2 Nsp3
Small molecules that bind the SARS-CoV-2 nonstructural protein 3 Mac1 domain in place of ADP-ribose could be useful as molecular probes or scaffolds for COVID-19 antiviral drug discovery because Mac1 has been linked to the ability of coronaviruses to evade cellular detection. A high-throughput assay based on differential scanning fluorimetry (DSF) was therefore optimized and used to identify possible Mac1 ligands in small libraries of drugs and drug-like compounds. Numerous promising compounds included nucleotides, steroids, β-lactams, and benzimidazoles. The main drawback to this approach was that a high percentage of compounds in some libraries were found to influence the observed Mac1 melting temperature. To prioritize DSF screening hits, the shapes of the observed melting curves and initial assay fluorescence were examined, and the results were compared with virtual screens performed using AutoDock Vina. The molecular basis for alternate ligand binding was also examined by determining a structure of one of the hits, cyclic adenosine monophosphate, with atomic resolution.  more » « less
Award ID(s):
1903899
PAR ID:
10299836
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
SLAS DISCOVERY: Advancing the Science of Drug Discovery
Volume:
25
Issue:
10
ISSN:
2472-5552
Page Range / eLocation ID:
1162 to 1170
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. DNA can assemble into non-B form structures that stall replication and cause genomic instability. One such secondary structure results from an inverted DNA repeat that can assemble into hairpin and cruciform structures during DNA replication. Quasipalindromes (QP), imperfect inverted repeats, are sites of mutational hotspots. Quasipalindrome-associated mutations (QPMs) occur through a template-switch mechanism in which the replicative polymerase stalls at a QP site and uses the nascent strand as a template instead of the correct template strand. This mutational event causes the QP to become a perfect or more perfect inverted repeat. Since it is not fully understood how template-switch events are stimulated or repressed, we designed a high-throughput screen to discover drugs that affect these events. QP reporters were engineered in the Escherichia coli lacZ gene to allow us to study template-switch events specifically. We tested 700 compounds from the NIH Clinical Collection through a disk diffusion assay and identified 11 positive hits. One of the hits was azidothymidine (zidovudine, AZT), a thymidine analog and DNA chain terminator. The other ten were found to be fluoroquinolone antibiotics, which induce DNA-protein crosslinks. This work shows that our screen is useful in identifying small molecules that affect quasipalindrome-associated template-switch mutations. We are currently assessing more small molecule libraries and applying this method to study other types of mutations. 
    more » « less
  2. The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2020 has impacted daily life globally for over a year. While multiple vaccines have been authorized for emergency use and one oral medication has entered clinical trials, we are still seeking antiviral drugs for a long-term treatment for SARS-CoV-2 as well as other coronaviruses. Computational drug screenings of two SARS-CoV-2 protein target candidates are presented in this thesis: the nidoviral RNA uridylate-specific endoribonuclease (Nsp15) and the main protease (Mpro) of SARS-CoV-2. Nonstructural proteins of coronaviruses were selected as targets as they are more conserved across coronavirus strains than structural proteins. High throughput virtual screening of small molecule libraries including DrugBank and ZINC 15 resulted in several promising compounds for each of these targets. Molecular dynamics simulation allowed us to predict the binding energies for these compounds using molecular mechanics with generalized born surface area solvation calculations (MM-GBSA). Four top compounds were discovered for Nsp15 and eight compounds for Mpro. 
    more » « less
  3. Abstract Structure-based virtual screening is a key tool in early drug discovery, with growing interest in the screening of multi-billion chemical compound libraries. However, the success of virtual screening crucially depends on the accuracy of the binding pose and binding affinity predicted by computational docking. Here we develop a highly accurate structure-based virtual screen method, RosettaVS, for predicting docking poses and binding affinities. Our approach outperforms other state-of-the-art methods on a wide range of benchmarks, partially due to our ability to model receptor flexibility. We incorporate this into a new open-source artificial intelligence accelerated virtual screening platform for drug discovery. Using this platform, we screen multi-billion compound libraries against two unrelated targets, a ubiquitin ligase target KLHDC2 and the human voltage-gated sodium channel NaV1.7. For both targets, we discover hit compounds, including seven hits (14% hit rate) to KLHDC2 and four hits (44% hit rate) to NaV1.7, all with single digit micromolar binding affinities. Screening in both cases is completed in less than seven days. Finally, a high resolution X-ray crystallographic structure validates the predicted docking pose for the KLHDC2 ligand complex, demonstrating the effectiveness of our method in lead discovery. 
    more » « less
  4. Three new organotin( iv ) carboxylate compounds were synthesized and structurally characterized by elemental analysis and FT-IR and multinuclear NMR ( 1 H, 13 C, 119 Sn) spectroscopy. Single X-ray crystallography reveals that compound C2 has a monoclinic crystal system with space group P 2 1 / c having distorted bipyramidal geometry defined by C 3 SnO 2 . The synthesized compounds were screened for drug-DNA interactions via UV-Vis spectroscopy and cyclic voltammetry showing good activity with high binding constants. Theoretical investigations also support the reactivity of the compounds as depicted from natural bond orbital (NBO) analysis using Gaussian 09. Synthesized compounds were initially evaluated on two cancer (HeLa and MCF-7) cell lines and cytotoxicity to normal cells was evaluated using a non-cancerous (BHK-21) cell line. All the compounds were found to be active, with IC 50 values less than that of the standard drug i.e. cisplatin. The cytotoxic effect of the most potent compound C2 was confirmed by LDH cytotoxicity assay and fluorescence imaging after PI staining. Apoptotic features in compound C2 treated cancer cells were visualized after DAPI staining while regulation of apoptosis was observed by reactive oxygen species generation, binding of C2 with DNA, a change in mitochondrial membrane potential and expression of activated caspase-9 and caspase-3 in cancer cells. Results are indicative of activation of the intrinsic pathway of apoptosis in C2 treated cancer cells. 
    more » « less
  5. Protein farnesylation is a post-translational modification where a 15-carbon farnesyl isoprenoid is appended to the C-terminal end of a protein by farnesyltransferase (FTase). This process often causes proteins to associate with the membrane and participate in signal transduction pathways. The most common substrates of FTase are proteins that have C-terminal tetrapeptide CaaX box sequences where the cysteine is the site of modification. However, recent work has shown that five amino acid sequences can also be recognized, including the pentapeptides CMIIM and CSLMQ. In this work, peptide libraries were initially used to systematically vary the residues in those two parental sequences using an assay based on Matrix Assisted Laser Desorption Ionization–Mass Spectrometry (MALDI-MS). In addition, 192 pentapeptide sequences from the human proteome were screened using that assay to discover additional extended CaaaX-box motifs. Selected hits from that screening effort were rescreened using an in vivo yeast reporter protein assay. The X-ray crystal structure of CMIIM bound to FTase was also solved, showing that the C-terminal tripeptide of that sequence interacted with the enzyme in a similar manner as the C-terminal tripeptide of CVVM, suggesting that the tripeptide comprises a common structural element for substrate recognition in both tetrapeptide and pentapeptide sequences. Molecular dynamics simulation of CMIIM bound to FTase further shed light on the molecular interactions involved, showing that a putative catalytically competent Zn(II)-thiolate species was able to form. Bioinformatic predictions of tetrapeptide (CaaX-box) reactivity correlated well with the reactivity of pentapeptides obtained from in vivo analysis, reinforcing the importance of the C-terminal tripeptide motif. This analysis provides a structural framework for understanding the reactivity of extended CaaaX-box motifs and a method that may be useful for predicting the reactivity of additional FTase substrates bearing CaaaX-box sequences. 
    more » « less