Data‐driven discovery in geoscience requires an enormous amount of FAIR (findable, accessible, interoperable and reusable) data derived from a multitude of sources. Many geology resources include data based on the geologic time scale, a system of dating that relates layers of rock (strata) to times in Earth history. The terminology of this geologic time scale, including the names of the strata and time intervals, is heterogeneous across data resources, hindering effective and efficient data integration. To address that issue, we created a deep‐time knowledge base that consists of knowledge graphs correlating international and regional geologic time scales, an online service of the knowledge graphs, and an R package to access the service. The knowledge base uses temporal topology to enable comparison and reasoning between various intervals and points in the geologic time scale. This work unifies and allows the querying of age‐related geologic information across the entirety of Earth history, resulting in a platform from which researchers can address complex deep‐time questions spanning numerous types of data and fields of study.
- Award ID(s):
- 1835717
- PAR ID:
- 10299877
- Date Published:
- Journal Name:
- National Science Review
- Volume:
- 8
- Issue:
- 9
- ISSN:
- 2095-5138
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Graph databases capture richly linked domain knowledge by integrating heterogeneous data and metadata into a unified representation. Here, we present the use of bespoke, interactive data graphics (bar charts, scatter plots, etc.) for visual exploration of a knowledge graph. By modeling a chart as a set of metadata that describes semantic context (SPARQL query) separately from visual context (Vega-Lite specification), we leverage the high-level, declarative nature of the SPARQL and Vega-Lite grammars to concisely specify web-based, interactive data graphics synchronized to a knowledge graph. Resources with dereferenceable URIs (uniform resource identifiers) can employ the hyperlink encoding channel or image marks in Vega-Lite to amplify the information content of a given data graphic, and published charts populate a browsable gallery of the database. We discuss design considerations that arise in relation to portability, persistence, and performance. Altogether, this pairing of SPARQL and Vega-Lite—demonstrated here in the domain of polymer nanocomposite materials science—offers an extensible approach to FAIR (findable, accessible, interoperable, reusable) scientific data visualization within a knowledge graph framework.
-
The FAIR Hackathon Workshop for Mathematics and the Physical Sciences (MPS) February 27-28, 2019 in Alexandria, Virginia brought together forty-four stakeholders in the physical sciences community to share skills, tools and techniques to FAIRify research data. As one of the first efforts of its kind in the US, the workshop offered participants a way to engage with FAIR principles (Findable, Accessible, Interoperable and Reusable) Data and metrics in the context of a hackathon. The workshop was designed to address issues of public access to data and to provide experience with FAIR tools and relevant hands-on experience for researchers. Existing FAIR tools and infrastructure were introduced. Hands-on hackathon breakout time was devoted to testing FAIR metrics and tools against physical sciences data. The hackathon invited MPS research data management stakeholders to react to the FAIR principles and to jointly consider gaps in the MPS data sharing ecosystem in the context of researcher’s actual projects. FAIR Gap analysis was introduced as a way to identify community-specific tools or infrastructure that could dramatically enhance the ability of domain scientists to make their data more FAIR.more » « less
-
Generative Adversarial Networks (GANs) have shown remarkable success in various generative design tasks, from topology optimization to material design, and shape parametrization. However, most generative design approaches based on GANs lack evaluation mechanisms to ensure the generation of diverse samples. In addition, no GAN-based generative design model incorporates user sentiments in the loss function to generate samples with high desirability from the aggregate perspectives of users. Motivated by these knowledge gaps, this paper builds and validates a novel GAN-based generative design model with an offline design evaluation function to generate samples that are not only realistic, but also diverse and desirable. A multimodal Data-driven Design Evaluation (DDE) model is developed to guide the generative process by automatically predicting user sentiments for the generated samples based on large-scale user reviews of previous designs. This paper incorporates DDE into the StyleGAN structure, a state-of-the-art GAN model, to enable data-driven generative processes that are innovative and user-centered. The results of experiments conducted on a large dataset of footwear products demonstrate the effectiveness of the proposed DDE-GAN in generating high-quality, diverse, and desirable concepts.more » « less
-
As buzzwords like “big data,” “machine learning,” and “high-throughput” expand through chemistry, chemists need to consider more than ever their data storage, data management, and data accessibility, whether in their own laboratories or with the broader community. While it is commonplace for chemists to use spreadsheets for data storage and analysis, a move towards database architectures ensures that the data can be more readily findable, accessible, interoperable, and reusable (FAIR). However, making this move has several challenges for those with limited-to-no knowledge of computer programming and databases. This Perspective presents basics of data management using databases with a focus on chemical data. We overview database fundamentals by exploring benefits of database use, introducing terminology, and establishing database design principles. We then detail the extract, transform, and load process for database construction, which includes an overview of data parsing and database architectures, spanning Standard Query Language (SQL) and No-SQL structures. We close by cataloging overarching challenges in database design. This Perspective is accompanied by an interactive demonstration available at https://github.com/D3TaLES/databases_demo. We do all of this within the context of chemical data with the aim of equipping chemists with the knowledge and skills to store, manage, and share their data while abiding by FAIR principles.more » « less