skip to main content


Title: The first high-redshift changing-look quasars
ABSTRACT We report on three redshift z > 2 quasars with dramatic changes in their C iv emission lines, the first sample of changing-look quasars (CLQs) at high redshift. This is also the first time the changing-look behaviour has been seen in a high-ionization emission line. SDSS J1205+3422, J1638+2827, and J2228 + 2201 show interesting behaviour in their observed optical light curves, and subsequent spectroscopy shows significant changes in the C iv broad emission line, with both line collapse and emergence being displayed on rest-frame time-scales of ∼240–1640 d. These are rapid changes, especially when considering virial black hole mass estimates of MBH > 109M⊙ for all three quasars. Continuum and emission line measurements from the three quasars show changes in the continuum-equivalent width plane with the CLQs seen to be on the edge of the full population distribution, and showing indications of an intrinsic Baldwin effect. We put these observations in context with recent state-change models, and note that even in their observed low-state, the C iv CLQs are generally above ∼5 per cent in Eddington luminosity.  more » « less
Award ID(s):
1815034
NSF-PAR ID:
10300093
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
498
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
2339 to 2353
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Active galactic nuclei (AGN) can vary significantly in their rest-frame optical/UV continuum emission, and with strong associated changes in broad line emission, on much shorter timescales than predicted by standard models of accretion disks around supermassive black holes. Most suchchanging-lookorchanging-stateAGN—and at higher luminosities, changing-look quasars (CLQs)—have been found via spectroscopic follow-up of known quasars showing strong photometric variability. The Time Domain Spectroscopic Survey of the Sloan Digital Sky Survey IV (SDSS-IV) includes repeat spectroscopy of large numbers of previously known quasars, many selected irrespective of photometric variability, and with spectral epochs separated by months to decades. Our visual examination of these repeat spectra for strong broad line variability yielded 61 newly discovered CLQ candidates. We quantitatively compare spectral epochs to measure changes in continuum and Hβbroad line emission, finding 19 CLQs, of which 15 are newly recognized. The parent sample includes only broad line quasars, so our study tends to find objects that have dimmed, i.e., turn-off CLQs. However, we nevertheless find four turn-on CLQs that meet our criteria, albeit with broad lines in both dim and bright states. We study the response of Hβand Mgiiemission lines to continuum changes. The Eddington ratios of CLQs are low, and/or their Hβbroad line width is large relative to the overall quasar population. Repeat quasar spectroscopy in the upcoming SDSS-V black hole Mapper program will reveal significant numbers of CLQs, enhancing our understanding of the frequency and duty cycle of such strong variability, and the physics and dynamics of the phenomenon.

     
    more » « less
  2. ABSTRACT

    We investigate possible factors that drive fast quasar outflows using a sample of 39 249 quasars at median redshift 〈z〉 ≈ 2.17. Unique to this study, the quasar redshifts are re-measured based on the Mg ii emission line, and explore unprecedented outflow velocities (>6000 km s−1), while maintaining statistical significance. We measure reliable C iv blueshifts for 1178 quasars with velocities >2500 km s−1. From those, 255(13) quasars have blueshifts above 4000(6000) km s−1, with the highest C iv velocity ≈7000 km s−1. Several correlations are observed, where higher C iv blueshifts in general are in quasars with broader, weaker C iv emission profiles, weak He ii emission, larger Eddington ratios, and bluer ultraviolet (UV) continuum slope across the rest-frame UV to near-infrared. Analysis reveals two primary factors contributing to faster outflows: higher Eddington ratios, and softer far-UV continuum (hν >24.6 eV). We find supporting evidence that radiative line driving may generate extreme outflow velocities, influenced by multiple factors as suggested by the aforementioned correlations. This evidence highlights the importance of considering a multidimensional parameter space in future studies when analyzing large C iv blueshifts to determine the fundamental causes of outflows.

     
    more » « less
  3. Abstract We report the results of near-infrared spectroscopic observations of 37 quasars in the redshift range 6.3 < z ≤ 7.64, including 32 quasars at z > 6.5, forming the largest quasar near-infrared spectral sample at this redshift. The spectra, taken with Keck, Gemini, VLT, and Magellan, allow investigations of central black hole mass and quasar rest-frame ultraviolet spectral properties. The black hole masses derived from the Mg ii emission lines are in the range (0.3–3.6) × 10 9 M ⊙ , which requires massive seed black holes with masses ≳10 3 –10 4 M ⊙ , assuming Eddington accretion since z = 30. The Eddington ratio distribution peaks at λ Edd ∼ 0.8 and has a mean of 1.08, suggesting high accretion rates for these quasars. The C iv –Mg ii emission-line velocity differences in our sample show an increase of C iv blueshift toward higher redshift, but the evolutionary trend observed from this sample is weaker than the previous results from smaller samples at similar redshift. The Fe ii /Mg ii flux ratios derived for these quasars up to z = 7.6, compared with previous measurements at different redshifts, do not show any evidence of strong redshift evolution, suggesting metal-enriched environments in these quasars. Using this quasar sample, we create a quasar composite spectrum for z > 6.5 quasars and find no significant redshift evolution of quasar broad emission lines and continuum slope, except for a blueshift of the C iv line. Our sample yields a strong broad absorption line quasar fraction of ∼24%, higher than the fractions in lower-redshift quasar samples, although this could be affected by small sample statistics and selection effects. 
    more » « less
  4. ABSTRACT

    We study the time variability (over ≤7.3 yr) of ultra fast outflows (UFOs) detected in a sample of 64 C iv broad absorption line (BAL) quasars (with 80 distinct BAL components) monitored using the Southern African Large Telescope. By comparing the properties of the quasar in our sample with those of a control sample of non-BAL quasars, we show that the distributions of black hole mass are different and the bolometric luminosities and optical photometric variations of UFO BAL quasars are slightly smaller compared to that of non-BAL quasars. The detection fraction of C iv equivalent width (W) variability (∼95 per cent), the fractional variability amplitude $\left(\frac{\Delta W}{W}\right)$ and the fraction of ‘highly variable’ BAL (i.e. $\big|$$\frac{\Delta W}{W}$$\big|$ > 0.67) components (∼33 per cent) are higher in our sample compared to the general BAL population. The scatter in $\frac{\Delta W}{W}$ and the fraction of ‘highly variable’ BALs increase with the time-scale probed. The $\frac{\Delta W}{W}$ distribution is asymmetric at large time scales. We attribute this to the BAL strengthening time-scales being shorter than the weakening time-scales. The BAL variability amplitude correlates strongly with the BAL properties compared to the quasar properties. BALs with low W, high-velocity, shallow profiles, and low-velocity width tend to show more variability. When multiple BAL components are present, a correlated variability is seen between low- and high-velocity components with the latter showing a larger amplitude variations. We find an anticorrelation between the fractional variations in the continuum flux and W. While this suggests photoionization induced variability, the scatter in continuum flux is much smaller than that of W.

     
    more » « less
  5. null (Ed.)
    ABSTRACT Outflows from supermassive black holes (SMBHs) play an important role in the co-evolution of themselves, their host galaxies, and the larger scale environments. Such outflows are often characterized by emission and absorption lines in various bands and in a wide velocity range blueshifted from the systematic redshift of the host quasar. In this paper, we report a strong broad line region (BLR) outflow from the z ≈ 4.7 quasar BR 1202-0725 based on the high-resolution optical spectrum taken with the Magellan Inamori Kyocera Echelle (MIKE) spectrograph installed on the 6.5 m Magellan/Clay telescope, obtained from the ‘Probing the He ii re-Ionization ERa via Absorbing C iv Historical Yield’ (HIERACHY) project. This rest-frame ultraviolet (UV) spectrum is characterized by a few significantly blueshifted broad emission lines from high ions; the most significant one is the C iv line at a velocity of $\sim -6500$ km s−1 relative to the H α emission line, which is among the highest velocity BLR outflows in observed quasars at z > 4. The measured properties of UV emission lines from different ions, except for O i and Ly α, also follow a clear trend that higher ions tend to be broader and outflow at higher average velocities. There are multiple C iv and Si iv absorbing components identified on the blue wings of the corresponding emission lines, which may be produced by either the outflow or the intervening absorbers. 
    more » « less