skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Propensity to endoplasmic reticulum stress in deer mouse fibroblasts predicts skin inflammation and body weight gain
ABSTRACT The unfolded protein response (UPR) is involved in the pathogenesis of metabolic disorders, yet whether variations in the UPR among individuals influence the propensity for metabolic disease remains unexplored. Using outbred deer mice as a model, we show that the intensity of UPR in fibroblasts isolated early in life predicts the extent of body weight gain after high-fat diet (HFD) administration. Contrary to those with intense UPR, animals with moderate UPR in fibroblasts and therefore displaying compromised stress resolution did not gain body weight but developed inflammation, especially in the skin, after HFD administration. Fibroblasts emerged as potent modifiers of this differential responsiveness to HFD, as indicated by the comparison of the UPR profiles of fibroblasts responding to fatty acids in vitro, by correlation analyses between UPR and proinflammatory cytokine-associated transcriptomes, and by BiP (also known as HSPA5) immunolocalization in skin lesions from animals receiving HFD. These results suggest that the UPR operates as a modifier of an individual's propensity for body weight gain in a manner that, at least in part, involves the regulation of an inflammatory response by skin fibroblasts. This article has an associated First Person interview with the first author of the paper.  more » « less
Award ID(s):
1736150
PAR ID:
10300122
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Disease Models & Mechanisms
Volume:
14
Issue:
10
ISSN:
1754-8403
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Endoplasmic reticulum (ER) stress has been causatively linked to the onset of various pathologies. However, if and how inherent variations in the resulting unfolded protein response (UPR) affect the predisposition to ER stress-associated metabolic conditions remains to be established. By using genetically diverse deer mice (Peromyscus maniculatus) as a model, we show that the profile of tunicamycin-induced UPR in fibroblasts isolated at puberty varies between individuals and predicts deregulation of lipid metabolism and diet-induced hepatic steatosis later in life. Among the different UPR targets tested, CHOP more consistently predicted elevated plasma cholesterol and hepatic steatosis. Compared to baseline levels or inducibility, the maximal intensity of the UPR following stimulation best predicts the onset of pathology. Differences in the expression profile of the UPR recorded in cells from different populations of deer mice correlate with the varying response to ER stress in altitude adaptation. Our data suggest that the response to ER stress in cultured cells varies among individuals and its profile early in life may predict the onset of ER stress-associated disease in the elderly. 
    more » « less
  2. null (Ed.)
    We sought to delineate the retinal features associated with the high-fat diet (HFD) mouse, a widely used model of obesity. C57BL/6 mice were fed either a high-fat (60% fat; HFD) or low-fat (10% fat; LFD) diet for up to 12 months. The effect of HFD on body weight and insulin resistance were measured. The retina was assessed by electroretinogram (ERG), fundus photography, permeability studies, and trypsin digests for enumeration of acellular capillaries. The HFD cohort experienced hypercholesterolemia when compared to the LFD cohort, but not hyperglycemia. HFD mice developed a higher body weight (60.33 g vs. 30.17g, p < 0.0001) as well as a reduced insulin sensitivity index (9.418 vs. 62.01, p = 0.0002) compared to LFD controls. At 6 months, retinal functional testing demonstrated a reduction in a-wave and b-wave amplitudes. At 12 months, mice on HFD showed evidence of increased retinal nerve infarcts and vascular leakage, reduced vascular density, but no increase in number of acellular capillaries compared to LFD mice. In conclusion, the HFD mouse is a useful model for examining the effect of prediabetes and hypercholesterolemia on the retina. The HFD-induced changes appear to occur slower than those observed in type 2 diabetes (T2D) models but are consistent with other retinopathy models, showing neural damage prior to vascular changes. 
    more » « less
  3. The unfolded protein response (UPR) is an adaptive response that is implicated in multiple metabolic pathologies, including hepatic steatosis. In the present study we analyzed publicly available RNAseq data to explore how the execution of the UPR is orchestrated in specimens that exhibit hepatocyte ballooning, a landmark feature of steatosis. By focusing on a panel of well-established UPR genes we assessed how the UPR is coordinated with the whole transcriptome in specimens with or without hepatocyte ballooning. Our analyses showed that neither average levels nor correlation in expression between major UPR genes such as HSPA5 (BiP/GRP78), HSP90b1 (GRP94) or DDIT3 (CHOP), is altered in different groups. However, a panel of transcripts that depending on the stringency of the analysis ranged from 16 to 372, lost its coordination with HSPA5, the major UPR chaperone, when hepatocyte ballooning occurred. In 13 genes the majority of which is associated with metabolic processes, the coordination with the HSPA5 was reversed from positive to negative in livers with ballooning hepatocytes. In order to examine if during ballooning, UPR genes abolish established and acquire novel functionalities we performed gene ontology analyses. These studies showed that among the various UPR genes interrogated, DDIT3 was the only that during ballooning was not associated with conventional functions linked to endoplasmic reticulum stress while HSPA90b1 exhibited the highest function retention between the specimens with or without ballooning. Our results challenge conventional notions on the impact of specific genes in disease and suggest that besides abundance, the mode of coordination of UPR may be more important for disease development. 
    more » « less
  4. Abstract Skin epidermis constitutes the outer permeability barrier that protects the body from dehydration, heat loss, and myriad external assaults. Mechanisms that maintain barrier integrity in constantly challenged adult skin and how epidermal dysregulation shapes the local immune microenvironment and whole‐body metabolism remain poorly understood. Here, we demonstrate that inducible and simultaneous ablation of transcription factor‐encodingOvol1andOvol2in adult epidermis results in barrier dysregulation through impacting epithelial‐mesenchymal plasticity and inflammatory gene expression. We find that aberrant skin immune activation then ensues, featuring Langerhans cell mobilization and T cell responses, and leading to elevated levels of secreted inflammatory factors in circulation. Finally, we identify failure to gain body weight and accumulate body fat as long‐term consequences of epidermal‐specificOvol1/2loss and show that these global metabolic changes along with the skin barrier/immune defects are partially rescued by immunosuppressant dexamethasone. Collectively, our study reveals key regulators of adult barrier maintenance and suggests a causal connection between epidermal dysregulation and whole‐body metabolism that is in part mediated through aberrant immune activation. 
    more » « less
  5. ABSTRACT Considerable progress has been made in understanding the physiological basis for variation in the life‐history patterns of animals, particularly with regard to the roles of oxidative stress and hormonal regulation. However, an underappreciated and understudied area that could play a role in mediating inter‐ and intraspecific variation of life history is endoplasmic reticulum (ER) stress, and the resulting unfolded protein response (UPRER). ER stress response and the UPRERmaintain proteostasis in cells by reducing the intracellular load of secretory proteins and enhancing protein folding capacity or initiating apoptosis in cells that cannot recover. Proper modulation of the ER stress response and execution of the UPRERallow animals to respond to intracellular and extracellular stressors and adapt to constantly changing environments. ER stress responses are heritable and there is considerable individual variation in UPRERphenotype in animals, suggesting that ER stress and UPRERphenotype can be subjected to natural selection. The variation in UPRERphenotype presumably reflects the way animals respond to ER stress and environmental challenges. Most of what we know about ER stress and the UPRERin animals has either come from biomedical studies using cell culture or from experiments involving conventional laboratory or agriculturally important models that exhibit limited genetic diversity. Furthermore, these studies involve the assessment of experimentally induced qualitative changes in gene expression as opposed to the quantitative variations that occur in naturally existing populations. Almost all of these studies were conducted in controlled settings that are often quite different from the conditions animals experience in nature. Herein, we review studies that investigated ER stress and the UPRERin relation to key life‐history traits including growth and development, reproduction, bioenergetics and physical performance, and ageing and senescence. We then ask if these studies can inform us about the role of ER stress and the UPRERin mediating the aforementioned life‐history traits in free‐living animals. We propose that there is a need to conduct experiments pertaining to ER stress and the UPRERin ecologically relevant settings, to characterize variation in ER stress and the UPRERin free‐living animals, and to relate the observed variation to key life‐history traits. We urge others to integrate multiple physiological systems and investigate how interactions between ER stress and oxidative stress shape life‐history trade‐offs in free‐living animals. 
    more » « less