skip to main content

Title: The LHC Olympics 2020: A Community Challenge for Anomaly Detection in High Energy Physics
A new paradigm for data-driven, model-agnostic new physics searches at colliders is emerging, and aims to leverage recent breakthroughs in anomaly detection and machine learning. In order to develop and benchmark new anomaly detection methods within this framework, it is essential to have standard datasets. To this end, we have created the LHC Olympics 2020, a community challenge accompanied by a set of simulated collider events. Participants in these Olympics have developed their methods using an R&D dataset and then tested them on black boxes: datasets with an unknown anomaly (or not). This paper will review the LHC Olympics 2020 challenge, including an overview of the competition, a description of methods deployed in the competition, lessons learned from the experience, and implications for data analyses with future datasets as well as future colliders.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Kasieczka, Gregor; Nachman, Benjamin; Shih, David
Date Published:
Journal Name:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We describe the outcome of a data challenge conducted as part of the Dark Machines ( initiative and the Les Houches 2019 workshop on Physics at TeV colliders. The challenged aims to detect signals of new physics at the Large Hadron Collider (LHC) using unsupervised machine learning algorithms. First, we propose how an anomaly score could be implemented to define model-independent signal regions in LHC searches. We define and describe a large benchmark dataset, consisting of >1 billion simulated LHC events corresponding to 10\, fb^{-1} 10 f b − 1 of proton-proton collisions at a center-of-mass energy of 13 TeV. We then review a wide range of anomaly detection and density estimation algorithms, developed in the context of the data challenge, and we measure their performance in a set of realistic analysis environments. We draw a number of useful conclusions that will aid the development of unsupervised new physics searches during the third run of the LHC, and provide our benchmark dataset for future studies at Code to reproduce the analysis is provided at 
    more » « less
  2. A bstract We study an attractive scenario, “Sleptonic SUSY”, which reconciles the 125 GeV Higgs scalar and the non-observation of superpartners thus far with potentially pivotal roles for slepton phenomenology: providing viable ongoing targets for LHC discovery, incorporating a co-annihilation partner for detectable thermal relic dark matter, and capable of mediating the potential muon g − 2 anomaly. This is accomplished by a modestly hierarchical spectrum, with sub-TeV sleptons and electroweakinos and with multi-TeV masses for the other new states. We study new elements in the UV MSSM realization of Sleptonic SUSY based on higher-dimensional sequestering and the synergy between the resulting gaugino-mediation, hypercharge D -term mediation and Higgs-mediation of SUSY-breaking, so as to more fully capture the range of possibilities. This framework stands out by harmoniously solving the flavor, CP and μ − Bμ problems of the supersymmetric paradigm. We discuss its extension to orbifold GUTs, including gauge-coupling and b -tau unification. We also develop a non-minimal model with extra Higgs fields, in which the electroweak vacuum is more readily cosmologically stable against decay to a charge-breaking vacuum, allowing a broader range of sleptonic spectra than in the MSSM alone. We survey the rich set of signals possible at the LHC and future colliders, covering both R -parity conservation and violation, as well as for dark matter detection. While the multi-TeV squarks imply a Little Hierarchy Problem, intriguingly, small changes in parameter space to improve naturalness result in dramatic phase transitions to either electroweak-preservation or charge-breaking. In a Multiverse setting, the modest unnaturalness may then be explained by the “principle of living dangerously”. 
    more » « less
  3. Abstract With the establishment and maturation of the experimental programs searching for new physics with sizeable couplings at the LHC, there is an increasing interest in the broader particle and astrophysics community for exploring the physics of light and feebly-interacting particles as a paradigm complementary to a New Physics sector at the TeV scale and beyond. FIPs 2020 has been the first workshop fully dedicated to the physics of feebly-interacting particles and was held virtually from 31 August to 4 September 2020. The workshop has gathered together experts from collider, beam dump, fixed target experiments, as well as from astrophysics, axions/ALPs searches, current/future neutrino experiments, and dark matter direct detection communities to discuss progress in experimental searches and underlying theory models for FIPs physics, and to enhance the cross-fertilisation across different fields. FIPs 2020 has been complemented by the topical workshop “Physics Beyond Colliders meets theory”, held at CERN from 7 June to 9 June 2020. This document presents the summary of the talks presented at the workshops and the outcome of the subsequent discussions held immediately after. It aims to provide a clear picture of this blooming field and proposes a few recommendations for the next round of experimental results. 
    more » « less
  4. Neutrinos from a particle collider have never been directly detected. FASER𝜈 at the Large Hadron Collider (LHC) is designed to detect such neutrinos for the first time and study their cross sections at TeV energies—at present, no such measurements are available at such high energies. In 2018, during LHC Run 2, we installed a pilot detector 480-m downstream of the ATLAS interaction point. In this pilot run, proton–proton collision data of 12.2 fb−1 at a center-of-mass energy of 13 TeV were collected. We observed the first candidate vertices, which were consistent with neutrino interactions. A 2.7𝜎 excess of neutrino-like signal above the background was measured. This milestone opens a new avenue for studying neutrinos at the existing and future high-energy colliders. During LHC Run 3, which will commence in 2022, we will deploy an emulsion detector with a target mass of 1.1 tons, coupled with the FASER magnetic spectrometer. This will yield ∼2,000 𝜈𝑒, ∼6,000 𝜈𝜇, and ∼40 𝜈𝜏 interactions in the detector. Herein, we present the status and plan of FASER𝜈 and report neutrino detection in the 2018 data. 
    more » « less
  5. Anomaly detection plays an important role in traffic operations and control. Missingness in spatial-temporal datasets prohibits anomaly detection algorithms from learning characteristic rules and patterns due to the lack of large amounts of data. This paper proposes an anomaly detection scheme for the 2021 Algorithms for Threat Detection (ATD) challenge based on Gaussian process models that generate features used in a logistic regression model which leads to high prediction accuracy for sparse traffic flow data with a large proportion of missingness. The dataset is provided by the National Science Foundation (NSF) in conjunction with the National Geospatial-Intelligence Agency (NGA), and it consists of thousands of labeled traffic flow records for 400 sensors from 2011 to 2020. Each sensor is purposely downsampled by NSF and NGA in order to simulate missing completely at random, and the missing rates are 99%, 98%, 95%, and 90%. Hence, it is challenging to detect anomalies from the sparse traffic flow data. The proposed scheme makes use of traffic patterns at different times of day and on different days of week to recover the complete data. The proposed anomaly detection scheme is computationally efficient by allowing parallel computation on different sensors. The proposed method is one of the two top performing algorithms in the 2021 ATD challenge. 
    more » « less