skip to main content

Title: Inductive Representation Learning in Temporal Networks via Causal Anonymous Walks
Temporal networks serve as abstractions of many real-world dynamic systems. These networks typically evolve according to certain laws, such as the law of triadic closure, which is universal in social networks. Inductive representation learning of temporal networks should be able to capture such laws and further be applied to systems that follow the same laws but have not been unseen during the training stage. Previous works in this area depend on either network node identities or rich edge attributes and typically fail to extract these laws. Here, we propose Causal Anonymous Walks (CAWs) to inductively represent a temporal network. CAWs are extracted by temporal random walks and work as automatic retrieval of temporal network motifs to represent network dynamics while avoiding the time-consuming selection and counting of those motifs. CAWs adopt a novel anonymization strategy that replaces node identities with the hitting counts of the nodes based on a set of sampled walks to keep the method inductive, and simultaneously establish the correlation between motifs. We further propose a neural-network model CAW-N to encode CAWs, and pair it with a CAW sampling strategy with constant memory and time cost to support online training and inference. CAW-N is evaluated to predict more » links over 6 real temporal networks and uniformly outperforms previous SOTA methods by averaged 15% AUC gain in the inductive setting. CAW-N also outperforms previous methods in 5 out of the 6 networks in the transductive setting. « less
Authors:
; ; ; ;
Award ID(s):
2030477 1918940 1934578 1835598
Publication Date:
NSF-PAR ID:
10300280
Journal Name:
International Conference on Learning Representations (ICLR)
Sponsoring Org:
National Science Foundation
More Like this
  1. Real-world networked systems often show dynamic properties with continuously evolving network nodes and topology over time. When learning from dynamic networks, it is beneficial to correlate all temporal networks to fully capture the similarity/relevance between nodes. Recent work for dynamic network representation learning typically trains each single network independently and imposes relevance regularization on the network learning at different time steps. Such a snapshot scheme fails to leverage topology similarity between temporal networks for progressive training. In addition to the static node relationships within each network, nodes could show similar variation patterns (e.g., change of local structures) within the temporal network sequence. Both static node structures and temporal variation patterns can be combined to better characterize node affinities for unified embedding learning. In this paper, we propose Graph Attention Evolving Networks (GAEN) for dynamic network embedding with preserved similarities between nodes derived from their temporal variation patterns. Instead of training graph attention weights for each network independently, we allow model weights to share and evolve across all temporal networks based on their respective topology discrepancies. Experiments and validations, on four real-world dynamic graphs, demonstrate that GAEN outperforms the state-of-the-art in both link prediction and node classification tasks.

  2. Abstract Motivation

    Machine learning models for predicting cell-type-specific transcription factor (TF) binding sites have become increasingly more accurate thanks to the increased availability of next-generation sequencing data and more standardized model evaluation criteria. However, knowledge transfer from data-rich to data-limited TFs and cell types remains crucial for improving TF binding prediction models because available binding labels are highly skewed towards a small collection of TFs and cell types. Transfer prediction of TF binding sites can potentially benefit from a multitask learning approach; however, existing methods typically use shallow single-task models to generate low-resolution predictions. Here, we propose NetTIME, a multitask learning framework for predicting cell-type-specific TF binding sites with base-pair resolution.

    Results

    We show that the multitask learning strategy for TF binding prediction is more efficient than the single-task approach due to the increased data availability. NetTIME trains high-dimensional embedding vectors to distinguish TF and cell-type identities. We show that this approach is critical for the success of the multitask learning strategy and allows our model to make accurate transfer predictions within and beyond the training panels of TFs and cell types. We additionally train a linear-chain conditional random field (CRF) to classify binding predictions and show that this CRF eliminates themore »need for setting a probability threshold and reduces classification noise. We compare our method’s predictive performance with two state-of-the-art methods, Catchitt and Leopard, and show that our method outperforms previous methods under both supervised and transfer learning settings.

    Availability and implementation

    NetTIME is freely available at https://github.com/ryi06/NetTIME and the code is also archived at https://doi.org/10.5281/zenodo.6994897.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

    « less
  3. Informative representation of road networks is essential to a wide variety of applications on intelligent transportation systems. In this article, we design a new learning framework, called Representation Learning for Road Networks (RLRN), which explores various intrinsic properties of road networks to learn embeddings of intersections and road segments in road networks. To implement the RLRN framework, we propose a new neural network model, namely Road Network to Vector (RN2Vec), to learn embeddings of intersections and road segments jointly by exploring geo-locality and homogeneity of them, topological structure of the road networks, and moving behaviors of road users. In addition to model design, issues involving data preparation for model training are examined. We evaluate the learned embeddings via extensive experiments on several real-world datasets using different downstream test cases, including node/edge classification and travel time estimation. Experimental results show that the proposed RN2Vec robustly outperforms existing methods, including (i) Feature-based methods : raw features and principal components analysis (PCA); (ii) Network embedding methods : DeepWalk, LINE, and Node2vec; and (iii) Features + Network structure-based methods : network embeddings and PCA, graph convolutional networks, and graph attention networks. RN2Vec significantly outperforms all of them in terms of F1-score in classifying trafficmore »signals (11.96% to 16.86%) and crossings (11.36% to 16.67%) on intersections and in classifying avenue (10.56% to 15.43%) and street (11.54% to 16.07%) on road segments, as well as in terms of Mean Absolute Error in travel time estimation (17.01% to 23.58%).« less
  4. There often is a dilemma between ease of optimization and robust out-of-distribution (OoD) generalization. For instance, many OoD methods rely on penalty terms whose optimization is challenging. They are either too strong to optimize reliably or too weak to achieve their goals. We propose to initialize the networks with a rich representation containing a palette of potentially useful features, ready to be used by even simple models. On the one hand, a rich representation provides a good initialization for the optimizer. On the other hand, it also provides an inductive bias that helps OoD generalization. Such a representation is constructed with the Rich Feature Construction (RFC) algorithm, also called the Bonsai algorithm, which consists of a succession of training episodes. During discovery episodes, we craft a multi-objective optimization criterion and its associated datasets in a manner that prevents the network from using the features constructed in the previous iterations. During synthesis episodes, we use knowledge distillation to force the network to simultaneously represent all the previously discovered features. Initializing the networks with Bonsai representations consistently helps six OoD methods achieve top performance on ColoredMNIST benchmark. The same technique substantially outperforms comparable results on the Wilds Camelyon17 task, eliminates the highmore »result variance that plagues other methods, and makes hyperparameter tuning and model selection more reliable.« less
  5. Dynamic social interaction networks are an important abstraction to model time-stamped social interactions such as eye contact, speaking and listening between people. These networks typically contain informative while subtle patterns that reflect people’s social characters and relationship, and therefore attract the attentions of a lot of social scientists and computer scientists. Previous approaches on extracting those patterns primarily rely on sophisticated expert knowledge of psychology and social science, and the obtained features are often overly task-specific. More generic models based on representation learning of dynamic networks may be applied, but the unique properties of social interactions cause severe model mismatch and degenerate the quality of the obtained representations. Here we fill this gap by proposing a novel framework, termed TEmporal network-DIffusion Convolutional networks (TEDIC), for generic representation learning on dynamic social interaction networks. We make TEDIC a good fit by designing two components: 1) Adopt diffusion of node attributes over a combination of the original network and its complement to capture long-hop interactive patterns embedded in the behaviors of people making or avoiding contact; 2) Leverage temporal convolution networks with hierarchical set-pooling operation to flexibly extract patterns from different-length interactions scattered over a long time span. The design also endowsmore »TEDIC with certain self-explaining power. We evaluate TEDIC over five real datasets for four different social character prediction tasks including deception detection, dominance identification, nervousness detection and community detection. TEDIC not only consistently outperforms previous SOTA’s, but also provides two important pieces of social insight. In addition, it exhibits favorable societal characteristics by remaining unbiased to people from different regions. Our project website is: http://snap.stanford.edu/tedic/.« less