Brain-computer interface (BCI) systems are proposed as a means of communication for locked-in patients. One common BCI paradigm is motor imagery in which the user controls a BCI by imagining movements of different body parts. It is known that imagining different body parts results in event-related desynchronization (ERD) in various frequency bands. Existing methods such as common spatial patterns (CSP) and its refinement filterbank common spatial patterns (FB-CSP) aim at finding features that are informative for classification of the motor imagery class. Our proposed method is a temporally adaptive common spatial patterns implementation of the commonly used filter-bank common spatial patterns method using convolutional neural networks; hence it is called TA-CSPNN. With this method we aim to: (1) make the feature extraction and classification end-to-end, (2) base it on the way CSP/FBCSP extracts relevant features, and finally, (3) reduce the number of trainable parameters compared to existing deep learning methods to improve generalizability in noisy data such as EEG. More importantly, we show that this reduction in parameters does not affect performance and in fact the trained network generalizes better for data from some participants. We show our results on two datasets, one publicly available from BCI Competition IV, dataset 2a and another in-house motor imagery dataset.
more »
« less
Motor imagery performance from calibration to online control in EEG-based brain-computer interfaces
Brain-computer interface (BCI) systems read and infer the user brain activity directly from the brain providing a means of communication and rehabilitation for patients in need. However, brain signals are known to be non-stationary and existing systems are not reliable and robust enough to be taken outside of the laboratory. Often times long calibration and recalibration of the system is required which can be tiresome and frustrating to the user. In this study, we compare the method of common spatial patterns (CSP) with two of its variants, namely, the canonical correlation analysis approach to common spatial patterns (CCACSP) and the common spatio-spectral patterns (CSSP) in detecting the motor imagery signal when trained on calibration data with sham feedback and tested in online control. We show that the motor imagery performance is significantly better with CSSP and CCACSP compared to CSP and hence, able to provide a more reliable transfer of the classifier from calibration to online control.
more »
« less
- PAR ID:
- 10300299
- Date Published:
- Journal Name:
- 2021 10th International IEEE/EMBS Conference on Neural Engineering (NER)
- Page Range / eLocation ID:
- 491 to 494
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Objective.Non-invasive electroencephalograms (EEG)-based brain–computer interfaces (BCIs) play a crucial role in a diverse range of applications, including motor rehabilitation, assistive and communication technologies, holding potential promise to benefit users across various clinical spectrums. Effective integration of these applications into daily life requires systems that provide stable and reliable BCI control for extended periods. Our prior research introduced the AIRTrode, a self-adhesive (A), injectable (I), and room-temperature (RT) spontaneously-crosslinked hydrogel electrode (AIRTrode). The AIRTrode has shown lower skin-contact impedance and greater stability than dry electrodes and, unlike wet gel electrodes, does not dry out after just a few hours, enhancing its suitability for long-term application. This study aims to demonstrate the efficacy of AIRTrodes in facilitating reliable, stable and long-term online EEG-based BCI operations.Approach.In this study, four healthy participants utilized AIRTrodes in two BCI control tasks–continuous and discrete–across two sessions separated by six hours. Throughout this duration, the AIRTrodes remained attached to the participants’ heads. In the continuous task, participants controlled the BCI through decoding of upper-limb motor imagery (MI). In the discrete task, the control was based on decoding of error-related potentials (ErrPs).Main Results.Using AIRTrodes, participants demonstrated consistently reliable online BCI performance across both sessions and tasks. The physiological signals captured during MI and ErrPs tasks were valid and remained stable over sessions. Lastly, both the BCI performances and physiological signals captured were comparable with those from freshly applied, research-grade wet gel electrodes, the latter requiring inconvenient re-application at the start of the second session.Significance.AIRTrodes show great potential promise for integrating non-invasive BCIs into everyday settings due to their ability to support consistent BCI performances over extended periods. This technology could significantly enhance the usability of BCIs in real-world applications, facilitating continuous, all-day functionality that was previously challenging with existing electrode technologies.more » « less
-
Motor impairments resulting from neurological disorders, such as strokes or spinal cord injuries, often impair hand and finger mobility, restricting a person’s ability to grasp and perform fine motor tasks. Brain plasticity refers to the inherent capability of the central nervous system to functionally and structurally reorganize itself in response to stimulation, which underpins rehabilitation from brain injuries or strokes. Linking voluntary cortical activity with corresponding motor execution has been identified as effective in promoting adaptive plasticity. This study introduces NeuroFlex, a motion-intent-controlled soft robotic glove for hand rehabilitation. NeuroFlex utilizes a transformer-based deep learning (DL) architecture to decode motion intent from motor imagery (MI) EEG data and translate it into control inputs for the assistive glove. The glove’s soft, lightweight, and flexible design enables users to perform rehabilitation exercises involving fist formation and grasping movements, aligning with natural hand functions for fine motor practices. The results show that the accuracy of decoding the intent of fingers making a fist from MI EEG can reach up to 85.3%, with an average AUC of 0.88. NeuroFlex demonstrates the feasibility of detecting and assisting the patient’s attempted movements using pure thinking through a non-intrusive brain–computer interface (BCI). This EEG-based soft glove aims to enhance the effectiveness and user experience of rehabilitation protocols, providing the possibility of extending therapeutic opportunities outside clinical settings.more » « less
-
In this paper we propose a novel neurostimulation protocol that provides an intervention-based assessment to distinguish the contributions of different motor control networks in the cortico-spinal system. Specifically, we use a combination of non-invasive brain stimulation and neuromuscular stimulation to probe neuromuscular system behavior with targeted impulse-response system identification. In this protocol, we use an in-house developed human-machine interface (HMI) for an isotonic wrist movement task, where the user controls a cursor on-screen. During the task, we generate unique motor evoked potentials based on triggered cortical or spinal level perturbations. Externally applied brain-level perturbations are triggered through TMS to cause wrist flexion/extension during the volitional task. The resultant contraction output and related reflex responses are measured by the HMI. These movements also include neuromodulation in the excitability of the brain-muscle pathway via transcranial direct current stimulation. Colloquially, spinal-level perturbations are triggered through skin-surface neuromuscular stimulation of the wrist muscles. The resultant brain-muscle and spinal-muscle pathways perturbed by the TMS and NMES, respectively, demonstrate temporal and spatial differences as manifested through the human-machine interface. This then provides a template to measure the specific neural outcomes of the movement tasks, and in decoding differences in the contribution of cortical- (long-latency) and spinal-level (short-latency) motor control. This protocol is part of the development of a diagnostic tool that can be used to better understand how interaction between cortical and spinal motor centers changes with learning, or injury such as that experienced following stroke.more » « less
-
The problem of deciphering how low-level patterns (action potentials in the brain, amino acids in a protein, etc.) drive high-level biological features (sensorimotor behavior, enzymatic function) represents the central challenge of quantitative biology. The lack of general methods for doing so from the size of datasets that can be collected experimentally severely limits our understanding of the biological world. For example, in neuroscience, some sensory and motor codes have been shown to consist of precisely timed multi-spike patterns. However, the combinatorial complexity of such pattern codes have precluded development of methods for their comprehensive analysis. Thus, just as it is hard to predict a protein’s function based on its sequence, we still do not understand how to accurately predict an organism’s behavior based on neural activity. Here, we introduce the unsupervised Bayesian Ising Approximation (uBIA) for solving this class of problems. We demonstrate its utility in an application to neural data, detecting precisely timed spike patterns that code for specific motor behaviors in a songbird vocal system. In data recorded during singing from neurons in a vocal control region, our method detects such codewords with an arbitrary number of spikes, does so from small data sets, and accounts for dependencies in occurrences of codewords. Detecting such comprehensive motor control dictionaries can improve our understanding of skilled motor control and the neural bases of sensorimotor learning in animals. To further illustrate the utility of uBIA, we used it to identify the distinct sets of activity patterns that encode vocal motor exploration versus typical song production. Crucially, our method can be used not only for analysis of neural systems, but also for understanding the structure of correlations in other biological and nonbiological datasets.more » « less
An official website of the United States government

