The prefrontal cortex is larger than would be predicted by body size or visual cortex volume in great apes compared with monkeys. Because prefrontal cortex is critical for working memory, we hypothesized that recognition memory tests would engage working memory in orangutans more robustly than in rhesus monkeys. In contrast to working memory, the familiarity response that results from repetition of an image is less cognitively taxing and has been associated with nonfrontal brain regions. Across three experiments, we observed a striking species difference in the control of behavior by these two types of memory. First, we found that recognition memory performance in orangutans was controlled by working memory under conditions in which this memory system plays little role in rhesus monkeys. Second, we found that unlike the case in monkeys, familiarity was not involved in recognition memory performance in orangutans, shown by differences with monkeys across three different measures. Memory in orangutans was not improved by use of novel images, was always impaired by a concurrent cognitive load, and orangutans did not accurately identify images seen minutes ago. These results are surprising and puzzling, but do support the view that prefrontal expansion in great apes favored working memory. At least in orangutans, increased dependence on working memory may come at a cost in terms of the availability of familiarity.
more »
« less
EEG Reveals Familiarity by Controlling Confidence in Memory Retrieval
We explore the separation of decision confidence and familiarity components in EEG data from recognition memory experiments. We first develop and test a classifier designed to classify decision confidence on new trials. We then use this classifier to control for confidence in the selection of trials of familiarity and correct rejection. This allows us to reveal a familiarity component that is of similar magnitude for recollection and familiarity judgements. This familiarity component reveals more of a frontal extent than obtained without confidence matching. We believe that this preliminary result can serve as a guide for designing future electrophysiological experiments to better separate the different components of recognition memory and that the technique of using classifiers to control for response-related covariates can be used for early exploration of these components in existing data.
more »
« less
- PAR ID:
- 10300300
- Date Published:
- Journal Name:
- Proceedings of the Annual Meeting of the Cognitive Science Society
- Volume:
- 43
- Page Range / eLocation ID:
- 2309-2315
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Age-related differences in working memory (WM) can be large, but the exact sources are unclear. We hypothesized that young adults outperform older adults on WM tasks because they use controlled attention processes to prioritize the maintenance of relevant information in WM in a proactive mode, whereas older adults tend to rely on the strength of familiarity signals to make memory decisions in a reactive mode. We used a WM task that cued participants to prioritize one item over others and presented repeated lure probes that cause errors when one is engaged in a reactive mode. Results showed that, relative to young adults with full attention available to use proactive control during the delays, older adults with full attention (and young adults with divided attention) during the delays had exaggerated error rates to repeated lure probes compared to control probes. When the amount of proactive interference was increased (by repeating stimuli across trials), older adults were able to engage in proactive control, and this eliminated their exaggerated error rate (while young adults with divided attention could not). These results provide evidence for a dual mechanisms of control account of age differences in WM.more » « less
-
Age-related declines in episodic memory do not affect all types of mnemonic information equally: when to-be-remembered information is in line with one’s prior knowledge, or schema-congruent, older adults often show no impairments. There are two major accounts of this effect: One proposes that schemas compensate for memory failures in aging, and the other proposes that schemas instead actively impair older adults’ otherwise intact memory for incongruent information. However, the evidence thus far is inconclusive, likely due to methodological constraints in teasing apart these complex underlying dynamics. We developed a paradigm that separately examines the contributions of underlying memory and schema knowledge to a final memory decision, allowing these dynamics to be examined directly. In the present study, healthy older and younger adults first searched for target objects in congruent or incongruent locations within scenes. In a subsequent test, participants indicated where in each scene the target had been located previously, and provided confidence-based recognition memory judgments that indexed underlying memory, in terms of recollection and familiarity, for the background scenes. We found that age-related increases in schema effects on target location spatial recall were predicted and statistically mediated by age-related increases in underlying memory failures, specifically within recollection. We also found that, relative to younger adults, older adults had poorer spatial memory precision within recollected scenes but slightly better precision within familiar scenes—and age increases in schema bias were primarily exhibited within recollected scenes. Interestingly, however, there were also slight age-related increases in schema effects that could not be explained by memory deficits alone, outlining a role for active schema influences as well. Together, these findings support the account that age-related schema effects on memory are compensatory in that they are driven primarily by underlying memory failures, and further suggest that age-related deficits in memory precision may also drive schema effects.more » « less
-
The brain mechanisms of memory consolidation remain elusive. Here, we examine blood-oxygen-level-dependent (BOLD) correlates of image recognition through the scope of multiple influential systems consolidation theories. We utilize the longitudinal Natural Scenes Dataset, a 7-Tesla functional magnetic resonance imaging human study in which ∼135,000 trials of image recognition were conducted over the span of a year among eight subjects. We find that early- and late-stage image recognition associates with both medial temporal lobe (MTL) and visual cortex when evaluating regional activations and a multivariate classifier. Supporting multiple-trace theory (MTT), parts of the MTL activation time course show remarkable fit to a 20-y-old MTT time-dynamical model predicting early trace intensity increases and slight subsequent interference ( R 2 > 0.90). These findings contrast a simplistic, yet common, view that memory traces are transferred from MTL to cortex. Next, we test the hypothesis that the MTL trace signature of memory consolidation should also reflect synaptic “desaturation,” as evidenced by an increased signal-to-noise ratio. We find that the magnitude of relative BOLD enhancement among surviving memories is positively linked to the rate of removal (i.e., forgetting) of competing traces. Moreover, an image-feature and time interaction of MTL and visual cortex functional connectivity suggests that consolidation mechanisms improve the specificity of a distributed trace. These neurobiological effects do not replicate on a shorter timescale (within a session), implicating a prolonged, offline process. While recognition can potentially involve cognitive processes outside of memory retrieval (e.g., re-encoding), our work largely favors MTT and desaturation as perhaps complementary consolidative memory mechanisms.more » « less
-
Seismic monitoring systems sift through seismograms in real-time, searching for target events, such as underground explosions. In this monitoring system, a burst of aftershocks (minor earthquakes occur after a major earthquake over days or even years) can be a source of confounding signals. Such a burst of aftershock signals can overload the human analysts of the monitoring system. To alleviate this burden at the onset of a sequence of events (e.g., aftershocks), a human analyst can label the first few of these events and start an online classifier to filter out subsequent aftershock events. We propose an online few-shot classification model FewSig for time series data for the above use case. The framework of FewSig consists of a selective model to identify the high-confidence positive events which are used for updating the models and a general classifier to label the remaining events. Our specific technique uses a %two-level decision tree selective model based on sliding DTW distance and a general classifier model based on distance metric learning with Neighborhood Component Analysis (NCA). The algorithm demonstrates surprising robustness when tested on univariate datasets from the UEA/UCR archive. Furthermore, we show two real-world earthquake events where the FewSig reduces the human effort in monitoring applications by filtering out the aftershock events.more » « less
An official website of the United States government

