- Award ID(s):
- 1812359
- PAR ID:
- 10300322
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2020
- Issue:
- 9
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
A bstract We review and examine in detail recent developments regarding the question of the nucleon mass decomposition. We discuss in particular the virial theorem in quantum field theory and its implications for the nucleon mass decomposition and mechanical equilibrium. We reconsider the renormalization of the QCD energy-momentum tensor in minimal-subtraction-type schemes and the physical interpretation of its components, as well as the role played by the trace anomaly and Poincaré symmetry. We also study the concept of “quantum anomalous energy” proposed in some works as a new contribution to the nucleon mass. Examining the various arguments, we conclude that the quantum anomalous energy is not a genuine contribution to the mass sum rule, as a consequence of translation symmetry.more » « less
-
We study the evolution equation for magnetic energy density for a non-relativistic magnetized plasma in the (Lagrangian) reference frame comoving with the electron bulk velocity. Analyzing the terms that arise due to the ideal electric field, namely, perpendicular electron compression and magnetic field line bending, we recast them to reveal a quantity with a functional form analogous to the often-studied pressure–strain interaction term that describes one piece of internal energy density evolution of the species in a plasma, except with the species pressure tensor replaced by the magnetic stress tensor. We dub it the “magnetic stress–strain interaction.” We discuss decompositions of the magnetic stress–strain interaction analogous to those used for pressure–strain interaction. These analogies facilitate the interpretation of the evolution of the various forms of energy in magnetized plasmas and should be useful for a wide array of applications, including magnetic reconnection, turbulence, collisionless shocks, and wave–particle interactions. We display and analyze all the terms that can change magnetic energy density in the Lagrangian reference frame of the electrons using a particle-in-cell simulation of magnetic reconnection.
-
The hadron mass can be obtained through the calculation of the trace of the energy-momentum tensor in the hadron which includes the trace anomaly and sigma terms. The anomaly due to conformal symmetry breaking is believed to be an important ingredient for hadron mass generation and confinement. In this work, we will present the calculation of the glue part of the trace anomaly form factors of the pion up toand the nucleon up to. The calculations are performed on a domain wall fermion ensemble with overlap valence quarks at seven valence pion masses varying fromto, including the unitary point. We calculate the radius of the glue trace anomaly for the pion and the nucleon from theexpansion. By performing a two-dimensional Fourier transform on the glue trace anomaly form factors in the infinite momentum frame with no energy transfer, we also obtain their spatial distributions for several valence quark masses. The results are qualitatively extrapolated to the physical valence pion mass with systematic errors from the unphysical sea quark mass, discretization effects in the renormalization sum rule, and finite-volume effects to be addressed in the future. We find the pion’s form factor changes sign, as does its spatial distribution, for light quark masses. This explains how the trace anomaly contribution to the pion mass approaches zero toward the chiral limit.
Published by the American Physical Society 2024 -
We present some recent developments on the nuclear many-body problem, such as the treatment of high-order correlations and finite temperature in the description of in-medium two-nucleon propagators. In this work we discuss two-time propagators of the particle-hole type, which describe the response of finite nuclei to external probes without nucleon transfer. The general theory is formulated in terms of the equation of motion method for these propagators with the only input from the bare nucleon-nucleon interaction. The numerical implementation was performed on the basis of the effective mason-nucleon Lagrangian in order to study the energy-dependent kernels of different complexity. The finite-temperature extension of the theory with ph ⊗ phonon configurations is applied to a study of the multipole response of medium-mass nuclei.more » « less
-
Abstract Partons traversing the strongly interacting medium produced in heavy-ion collisions are expected to lose energy depending on their color charge and mass. We measure the nuclear modification factors for charm- and bottom-decay electrons, defined as the ratio of yields, divided by the number of binary nucleon–nucleon collisions, in $$\sqrt{s_{\textrm{NN}}}=200$$ s NN = 200 GeV Au+Au collisions to p + p collisions ( $$R_{\textrm{AA}}$$ R AA ), or in central to peripheral Au+Au collisions ( $$R_{\textrm{CP}}$$ R CP ). We find the bottom-decay electron $$R_{\textrm{AA}}$$ R AA and $$R_{\textrm{CP}}$$ R CP to be significantly higher than those of charm-decay electrons. Model calculations including mass-dependent parton energy loss in a strongly coupled medium are consistent with the measured data. These observations provide evidence of mass ordering of charm and bottom quark energy loss when traversing through the strongly coupled medium created in heavy-ion collisions.more » « less