skip to main content

Title: Pseudomonas syringae effector HopZ3 suppresses the bacterial AvrPto1– tomato PTO immune complex via acetylation
The plant pathogen Pseudomonas syringae secretes multiple effectors that modulate plant defenses. Some effectors trigger defenses due to specific recognition by plant immune complexes, whereas others can suppress the resulting immune responses. The HopZ3 effector of P. syringae pv. syringae B728a (PsyB728a) is an acetyltransferase that modifies not only components of plant immune complexes, but also the Psy effectors that activate these complexes. In Arabidopsis, HopZ3 acetylates the host RPM1 complex and the Psy effectors AvrRpm1 and AvrB3. This study focuses on the role of HopZ3 during tomato infection. In Psy-resistant tomato, the main immune complex includes PRF and PTO, a RIPK-family kinase that recognizes the AvrPto effector. HopZ3 acts as avirulence factor on tomato by suppressing AvrPto1Psy-triggered immunity. HopZ3acetylates AvrPto1Psy and the host proteins PTO, SlRIPK and SlRIN4s. Biochemical reconstruction and site-directed mutagenesis experiments suggest that acetylation acts in multiple ways to suppress immune signaling in tomato. First, acetylation disrupts the critical AvrPto1Psy-PTO interaction needed to initiate the immune response. Unmodified residues at the binding interface of both proteins and at other residues needed for binding are acetylated. Second, acetylation occurs at residues important for AvrPto1Psy function but not for binding to PTO. Finally, acetylation reduces specific phosphorylations needed for more » promoting the immune-inducing activity of HopZ3’s targets such as AvrPto1Psy and PTO. In some cases, acetylation competes with phosphorylation. HopZ3-mediated acetylation suppresses the kinase activity of SlRIPK and the phosphorylation of its SlRIN4 substrate previously implicated in PTO-signaling. Thus, HopZ3 disrupts the functions of multiple immune components and the effectors that trigger them, leading to increased susceptibility to infection. Finally, mass 44 spectrometry used to map specific acetylated residues confirmed HopZ3’s unusual capacity to modify histidine in addition to serine, threonine and lysine residues. « less
Authors:
; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
1837824
Publication Date:
NSF-PAR ID:
10300410
Journal Name:
PLOS pathogens
ISSN:
1553-7366
Sponsoring Org:
National Science Foundation
More Like this
  1. Kamoun, Sophien (Ed.)
    Plant protein kinases form redundant signaling pathways to perceive microbial pathogens and activate immunity. Bacterial pathogens repress cellular immune responses by secreting effectors, some of which bind and inhibit multiple host kinases. To understand how broadly bacterial effectors may bind protein kinases and the function of these kinase interactors, we first tested kinase–effector (K-E) interactions using the Pseudomonas syringae pv. tomato–tomato pathosystem. We tested interactions between five individual effectors (HopAI1, AvrPto, HopA1, HopM1, and HopAF1) and 279 tomato kinases in tomato cells. Over half of the tested kinases interacted with at least one effector, and 48% of these kinases interacted with more than three effectors, suggesting a role in the defense. Next, we characterized the role of select multi-effector–interacting kinases and revealed their roles in basal resistance, effector-triggered immunity (ETI), or programmed cell death (PCD). The immune function of several of these kinases was only detectable in the presence of effectors, suggesting that these kinases are critical when particular cell functions are perturbed or that their role is typically masked. To visualize the kinase networks underlying the cellular responses, we derived signal-specific networks. A comparison of the networks revealed a limited overlap between ETI and basal immunity networks. In addition,more »the basal immune network complexity increased when exposed to some of the effectors. The networks were used to successfully predict the role of a new set of kinases in basal immunity. Our work indicates the complexity of the larger kinase-based defense network and demonstrates how virulence- and avirulence-associated bacterial effectors alter sectors of the defense network.« less
  2. Abstract

    Mitogen-activated protein (MAP) kinase signaling cascades play important roles in eukaryotic defense against various pathogens. Activation of the extracellular ATP (eATP) receptor P2K1 triggers MAP kinase 3 and 6 (MPK3/6) phosphorylation, which leads to an elevated plant defense response. However, the mechanism by which P2K1 activates the MAPK cascade is unclear. In this study, we show that in Arabidopsis thaliana, P2K1 phosphorylates the Raf-like MAP kinase kinase kinase (MAPKKK) INTEGRIN-LINKED KINASE 5 (ILK5) on serine 192 in the presence of eATP. The interaction between P2K1 and ILK5 was confirmed both in vitro and in planta and their interaction was enhanced by ATP treatment. Similar to P2K1 expression, ILK5 expression levels were highly induced by treatment with ATP, flg22, Pseudomonas syringae pv. tomato DC3000, and various abiotic stresses. ILK5 interacts with and phosphorylates the MAP kinase MKK5. Moreover, phosphorylation of MPK3/6 was significantly reduced upon ATP treatment in ilk5 mutant plants, relative to wild-type (WT). The ilk5 mutant plants showed higher susceptibility to P. syringae pathogen infection relative to WT plants. Plants expressing only the mutant ILK5S192A protein, with decreased kinase activity, did not activate the MAPK cascade upon ATP addition. These results suggest that eATP activation of P2K1 resultsmore »in transphosphorylation of the Raf-like MAPKKK ILK5, which subsequently triggers the MAPK cascade, culminating in activation of MPK3/6 associated with an elevated innate immune response.

    « less
  3. Calcium (Ca2+)-dependent protein kinases (CDPKs or CPKs) are a unique family of Ca2+sensor/kinase-effector proteins with diverse functions in plants. InArabidopsis thaliana, CPK28 contributes to immune homeostasis by promoting degradation of the key immune signaling receptor-like cytoplasmic kinase BOTRYTIS-INDUCED KINASE 1 (BIK1) and additionally functions in vegetative-to-reproductive stage transition. How CPK28 controls these seemingly disparate pathways is unknown. Here, we identify a single phosphorylation site in the kinase domain of CPK28 (Ser318) that is differentially required for its function in immune homeostasis and stem elongation. We show that CPK28 undergoes intermolecular autophosphorylation on Ser318 and can additionally be transphosphorylated on this residue by BIK1. Analysis of several other phosphorylation sites demonstrates that Ser318 phosphorylation is uniquely required to prime CPK28 for Ca2+activation at physiological concentrations of Ca2+, possibly through stabilization of the Ca2+-bound active state as indicated by intrinsic fluorescence experiments. Together, our data indicate that phosphorylation of Ser318 is required for the activation of CPK28 at low intracellular [Ca2+] to prevent initiation of an immune response in the absence of infection. By comparison, phosphorylation of Ser318 is not required for stem elongation, indicating pathway-specific requirements for phosphorylation-based Ca2+-sensitivity priming. We additionally provide evidence for a conserved function for Ser318 phosphorylationmore »in related group IV CDPKs, which holds promise for biotechnological applications by generating CDPK alleles that enhance resistance to microbial pathogens without consequences to yield.

    « less
  4. Abstract Plants contain many nucleotide-binding leucine-rich repeat (NLR) proteins that are postulated to function as intracellular immune receptors but do not yet have an identified function during plant-pathogen interactions. SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1 (SNC1) one such NLR protein of the Toll-interleukin 1 receptor (TIR) type despite its well characterized gain-of-function activity and its involvement in autoimmunity in Arabidopsis (Arabidopsis thaliana). Here, we investigated the role of SNC1 in natural plant-pathogen interactions and genetically tested the importance of the enzymatic activities of its TIR domain for its function. The SNC1 loss-of-function mutants were more susceptible to avirulent bacterial pathogen strains of Pseudomonas syringae containing specific effectors, especially under constant light growth condition. The mutants also had reduced defense gene expression induction and hypersensitive responses upon infection by avirulent pathogens under constant light growth condition. In addition, genetic and biochemical studies supported that the TIR enzymatic activity of SNC1 is required for its gain-of-function activity. In sum, our study uncovers a role of SNC1 as an amplifier of plant defense responses during natural plant-pathogen interactions and indicates its use of enzymatic activity and intermolecular interactions for triggering autoimmune responses.
  5. Tyrosine phosphorylation has emerged as an important regulator of plasma membrane-localized immune receptors activity. Here, we investigate the role of tyrosine phosphorylation in the regulation of riceXANTHOMONASRESISTANCE 21 (XA21)-mediated immunity. We demonstrate that the juxtamembrane and kinase domain ofEscherichia coli–expressed XA21 (XA21JK) autophosphorylates on tyrosine residues. Directed mutagenesis of four out of the nine tyrosine residues in XA21JK reduced autophosphorylation. These sites include Tyr698in the juxtamembrane domain, and Tyr786, Tyr907, and Tyr909in the kinase domain. Rice plants expressing XA21-GFP fusion proteins or proteins with these tyrosine residues individually mutated to phenylalanine (XA21YF-GFP), which prevents phosphorylation at these sites, maintain resistance toXanthomonas oryzaepv.oryzae. In contrast, plants expressing phosphomimetic XA21 variants with tyrosine mutated to aspartate (XA21YD-GFP) were susceptible. In vitro purified XA21JKY698F, XA21JKY907F, and XA21JKY909Fvariants are catalytically active, whereas activity was not detected in XA21JKY768Fand the four XA21JKYDvariants. We previously demonstrated that interaction of XA21 with the co-receptor OsSERK2 is critical for biological function. Four of the XA21JKYFvariants maintain interaction with OsSERK2 as well as the XA21 binding (XB) proteins XB3 and XB15 in yeast, suggesting that these four tyrosine residues are not required for their interaction. Taken together, these results suggest that XA21 is capable of tyrosine autophosphorylation, but themore »identified tyrosine residues are not required for activation of XA21-mediated immunity or interaction with predicted XA21 signaling proteins.

    « less