skip to main content


Title: Open OnDemand: State of the platform, project, and the future
Summary

High performance computing (HPC) has led to remarkable advances in science and engineering and has become an indispensable tool for research. Unfortunately, HPC use and adoption by many researchers is often hindered by the complex way these resources are accessed. Indeed, while the web has become the dominant access mechanism for remote computing services in virtually every computing area, HPC is a notable exception. Open OnDemand is an open source project negating this trend by providing web‐based access to HPC resources (https://openondemand.org). This article describes the challenges to adoption and other lessons learned over the 3‐year project that may be relevant to other science gateway projects. We end with a description of future plans the project team has during the Open OnDemand 2.0 project including specific developments in machine learning and GPU monitoring.

 
more » « less
Award ID(s):
1835725 1534949
NSF-PAR ID:
10449563
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Concurrency and Computation: Practice and Experience
Volume:
33
Issue:
19
ISSN:
1532-0626
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Molecular Sciences Software Institute's (MolSSI) Quantum Chemistry Archive (QCArchive) project is an umbrella name that covers both a central server hosted by MolSSI for community data and the Python‐based software infrastructure that powers automated computation and storage of quantum chemistry (QC) results. The MolSSI‐hosted central server provides the computational molecular sciences community a location to freely access tens of millions of QC computations for machine learning, methodology assessment, force‐field fitting, and more through a Python interface. Facile, user‐friendly mining of the centrally archived quantum chemical data also can be achieved through web applications found athttps://qcarchive.molssi.org. The software infrastructure can be used as a standalone platform to compute, structure, and distribute hundreds of millions of QC computations for individuals or groups of researchers at any scale. The QCArchiveInfrastructureis open‐source (BSD‐3C), code repositories can be found athttps://github.com/MolSSI, and releases can be downloaded via PyPI and Conda.

    This article is categorized under:

    Electronic Structure Theory > Ab Initio Electronic Structure Methods

    Software > Quantum Chemistry

    Data Science > Computer Algorithms and Programming

     
    more » « less
  2. Background:

    Short-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple models are combined into an ensemble. Here, we report on the performance of ensembles in predicting COVID-19 cases and deaths across Europe between 08 March 2021 and 07 March 2022.

    Methods:

    We used open-source tools to develop a public European COVID-19 Forecast Hub. We invited groups globally to contribute weekly forecasts for COVID-19 cases and deaths reported by a standardised source for 32 countries over the next 1–4 weeks. Teams submitted forecasts from March 2021 using standardised quantiles of the predictive distribution. Each week we created an ensemble forecast, where each predictive quantile was calculated as the equally-weighted average (initially the mean and then from 26th July the median) of all individual models’ predictive quantiles. We measured the performance of each model using the relative Weighted Interval Score (WIS), comparing models’ forecast accuracy relative to all other models. We retrospectively explored alternative methods for ensemble forecasts, including weighted averages based on models’ past predictive performance.

    Results:

    Over 52 weeks, we collected forecasts from 48 unique models. We evaluated 29 models’ forecast scores in comparison to the ensemble model. We found a weekly ensemble had a consistently strong performance across countries over time. Across all horizons and locations, the ensemble performed better on relative WIS than 83% of participating models’ forecasts of incident cases (with a total N=886 predictions from 23 unique models), and 91% of participating models’ forecasts of deaths (N=763 predictions from 20 models). Across a 1–4 week time horizon, ensemble performance declined with longer forecast periods when forecasting cases, but remained stable over 4 weeks for incident death forecasts. In every forecast across 32 countries, the ensemble outperformed most contributing models when forecasting either cases or deaths, frequently outperforming all of its individual component models. Among several choices of ensemble methods we found that the most influential and best choice was to use a median average of models instead of using the mean, regardless of methods of weighting component forecast models.

    Conclusions:

    Our results support the use of combining forecasts from individual models into an ensemble in order to improve predictive performance across epidemiological targets and populations during infectious disease epidemics. Our findings further suggest that median ensemble methods yield better predictive performance more than ones based on means. Our findings also highlight that forecast consumers should place more weight on incident death forecasts than incident case forecasts at forecast horizons greater than 2 weeks.

    Funding:

    AA, BH, BL, LWa, MMa, PP, SV funded by National Institutes of Health (NIH) Grant 1R01GM109718, NSF BIG DATA Grant IIS-1633028, NSF Grant No.: OAC-1916805, NSF Expeditions in Computing Grant CCF-1918656, CCF-1917819, NSF RAPID CNS-2028004, NSF RAPID OAC-2027541, US Centers for Disease Control and Prevention 75D30119C05935, a grant from Google, University of Virginia Strategic Investment Fund award number SIF160, Defense Threat Reduction Agency (DTRA) under Contract No. HDTRA1-19-D-0007, and respectively Virginia Dept of Health Grant VDH-21-501-0141, VDH-21-501-0143, VDH-21-501-0147, VDH-21-501-0145, VDH-21-501-0146, VDH-21-501-0142, VDH-21-501-0148. AF, AMa, GL funded by SMIGE - Modelli statistici inferenziali per governare l'epidemia, FISR 2020-Covid-19 I Fase, FISR2020IP-00156, Codice Progetto: PRJ-0695. AM, BK, FD, FR, JK, JN, JZ, KN, MG, MR, MS, RB funded by Ministry of Science and Higher Education of Poland with grant 28/WFSN/2021 to the University of Warsaw. BRe, CPe, JLAz funded by Ministerio de Sanidad/ISCIII. BT, PG funded by PERISCOPE European H2020 project, contract number 101016233. CP, DL, EA, MC, SA funded by European Commission - Directorate-General for Communications Networks, Content and Technology through the contract LC-01485746, and Ministerio de Ciencia, Innovacion y Universidades and FEDER, with the project PGC2018-095456-B-I00. DE., MGu funded by Spanish Ministry of Health / REACT-UE (FEDER). DO, GF, IMi, LC funded by Laboratory Directed Research and Development program of Los Alamos National Laboratory (LANL) under project number 20200700ER. DS, ELR, GG, NGR, NW, YW funded by National Institutes of General Medical Sciences (R35GM119582; the content is solely the responsibility of the authors and does not necessarily represent the official views of NIGMS or the National Institutes of Health). FB, FP funded by InPresa, Lombardy Region, Italy. HG, KS funded by European Centre for Disease Prevention and Control. IV funded by Agencia de Qualitat i Avaluacio Sanitaries de Catalunya (AQuAS) through contract 2021-021OE. JDe, SMo, VP funded by Netzwerk Universitatsmedizin (NUM) project egePan (01KX2021). JPB, SH, TH funded by Federal Ministry of Education and Research (BMBF; grant 05M18SIA). KH, MSc, YKh funded by Project SaxoCOV, funded by the German Free State of Saxony. Presentation of data, model results and simulations also funded by the NFDI4Health Task Force COVID-19 (https://www.nfdi4health.de/task-force-covid-19-2) within the framework of a DFG-project (LO-342/17-1). LP, VE funded by Mathematical and Statistical modelling project (MUNI/A/1615/2020), Online platform for real-time monitoring, analysis and management of epidemic situations (MUNI/11/02202001/2020); VE also supported by RECETOX research infrastructure (Ministry of Education, Youth and Sports of the Czech Republic: LM2018121), the CETOCOEN EXCELLENCE (CZ.02.1.01/0.0/0.0/17-043/0009632), RECETOX RI project (CZ.02.1.01/0.0/0.0/16-013/0001761). NIB funded by Health Protection Research Unit (grant code NIHR200908). SAb, SF funded by Wellcome Trust (210758/Z/18/Z).

     
    more » « less
  3. Summary

    In order to handle the vast quantities of biological data gener6ated by high‐throughput experimental technologies, the BioExtract Server (bioextract.org) has leveraged iPlant Collaborative (www.iplantcollaborative.org) functionality to help address big data storage and analysis issues in the bioinformatics field. The BioExtract Server is a Web‐based, workflow‐enabling system that offers researchers a flexible environment for analyzing genomic data. It provides researchers with the ability to save a series of BioExtract Server tasks (e.g., query a data source, save a data extract, and execute an analytic tool) as a workflow and the opportunity for researchers to share their data extracts, analytic tools, and workflows with collaborators. The iPlant Collaborative is a community of researchers, educators, and students working to enrich science through the development of cyberinfrastructure—the physical computing resources, collaborative environment, virtual machine resources, and interoperable analysis software and data services—that are essential components of modern biology. The iPlant AGAVE Advanced Programming Interface, developed through the iPlant Collaborative, is a hosted, Software‐as‐a‐Service resource providing access to a collection of high performance computing and cloud resources. Leveraging AGAVE, the BioExtract Server gives researchers easy access to multiple high performance computers and delivers computation and storage as dynamically allocated resources via the Internet. © 2014 The Authors.Concurrency and Computation: Practice and Experiencepublished by John Wiley & Sons Ltd.

     
    more » « less
  4. Abstract Background

    Enacting STEM education reform is a complex task and there are a variety of approaches that might be selected by change agents. When working on an institutional change project to impact multiple parts of the STEM education system, teams of change agents may select multiple strategies and tactics to enact at one time and over multiple years of a project. However, the literature lacks studies which document and analyze strategies and tactics used by change project teams in a way that can be useful for other change agents. The current study seeks to fill this gap by investigating National Science Foundation-funded change initiatives at three public research universities focused on encouraging the adoption of evidenced-based instructional practices by STEM faculty in order to understand the strategies used within and across projects.

    Results

    Qualitative framework analysis using the lens of the Henderson et al. (Journal of Research in Science Teaching 48(8): 952–984, 2011.https://doi.org/10.1002/tea.20439) Four Categories of Change Strategies Model showed that institutional projects enact a wide range of tactics that span the four strategies represented in the four categories of the model both across institutions and within each institution. The analysis documents a number of change tactics not previously described by the model and offers expanded definitions of the change processes that operate within each category in the context of institutional change projects.

    Conclusion

    This descriptive work advances our understanding of the breadth and depth of actions taken by institutional change initiatives and provides insights into types of variations that might be observed based on different institutional contexts. The current analysis both affirms the value of the original model and identifies expanded ways to think about the four categories within the context of institutional change projects.

     
    more » « less
  5. Abstract

    Journal editors have a large amount of power to advance open science in their respective fields by incentivising and mandating open policies and practices at their journals. The Data PASS Journal Editors Discussion Interface (JEDI, an online community for social science journal editors:www.dpjedi.org) has collated several resources on embedding open science in journal editing (www.dpjedi.org/resources). However, it can be overwhelming as an editor new to open science practices to know where to start. For this reason, we created a guide for journal editors on how to get started with open science. The guide outlines steps that editors can take to implement open policies and practices within their journal, and goes through the what, why, how, and worries of each policy and practice. This manuscript introduces and summarizes the guide (full guide:https://doi.org/10.31219/osf.io/hstcx).

     
    more » « less