Oxytocin is a neuropeptide positively associated with prosociality in adults. Here, we studied whether infants' salivary oxytocin can be reliably measured, is developmentally stable, and is linked to social behavior. We longitudinally collected saliva from 62 U.S. infants (44 % female, 56 % Hispanic/Latino, 24 % Black, 18 % non-Hispanic White, 11 % multiracial) at 4, 8, and 14 months of age and offline-video-coded the valence of their facial affect in response to a video of a smiling woman. We also captured infants' affective reactions in terms of excitement/joyfulness during a live, structured interaction with a singing woman in the Early Social Communication Scales at 14 months. We detected stable individual differences in infants' oxytocin levels over time (over minutes and months) and in infants' positive affect over months and across contexts (video-based and in live interactions). We detected no statistically significant changes in oxytocin levels between 4 and 8 months but found an increase from 8 to 14 months. Infants with higher oxytocin levels showed more positive facial affect to a smiling person video at 4 months; however, this association disappeared at 8 months, and reversed at 14 months (i.e., higher oxytocin was associated with less positive facial affect). Infant salivary oxytocin may be a reliable physiological measure of individual differences related to socio-emotional development.
more »
« less
Epigenetic tuning of brain signal entropy in emergent human social behavior
Abstract Background How the brain develops accurate models of the external world and generates appropriate behavioral responses is a vital question of widespread multidisciplinary interest. It is increasingly understood that brain signal variability—posited to enhance perception, facilitate flexible cognitive representations, and improve behavioral outcomes—plays an important role in neural and cognitive development. The ability to perceive, interpret, and respond to complex and dynamic social information is particularly critical for the development of adaptive learning and behavior. Social perception relies on oxytocin-regulated neural networks that emerge early in development. Methods We tested the hypothesis that individual differences in the endogenous oxytocinergic system early in life may influence social behavioral outcomes by regulating variability in brain signaling during social perception. In study 1, 55 infants provided a saliva sample at 5 months of age for analysis of individual differences in the oxytocinergic system and underwent electroencephalography (EEG) while listening to human vocalizations at 8 months of age for the assessment of brain signal variability. Infant behavior was assessed via parental report. In study 2, 60 infants provided a saliva sample and underwent EEG while viewing faces and objects and listening to human speech and water sounds at 4 months of age. Infant behavior was assessed via parental report and eye tracking. Results We show in two independent infant samples that increased brain signal entropy during social perception is in part explained by an epigenetic modification to the oxytocin receptor gene ( OXTR ) and accounts for significant individual differences in social behavior in the first year of life. These results are measure-, context-, and modality-specific: entropy, not standard deviation, links OXTR methylation and infant behavior; entropy evoked during social perception specifically explains social behavior only; and only entropy evoked during social auditory perception predicts infant vocalization behavior. Conclusions Demonstrating these associations in infancy is critical for elucidating the neurobiological mechanisms accounting for individual differences in cognition and behavior relevant to neurodevelopmental disorders. Our results suggest that an epigenetic modification to the oxytocin receptor gene and brain signal entropy are useful indicators of social development and may hold potential diagnostic, therapeutic, and prognostic value.
more »
« less
- Award ID(s):
- 1729289
- PAR ID:
- 10300540
- Date Published:
- Journal Name:
- BMC Medicine
- Volume:
- 18
- Issue:
- 1
- ISSN:
- 1741-7015
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The contribution of nature versus nurture to the development of human behavior has been debated for centuries. Here, we offer a piece to this complex puzzle by identifying the human endogenous oxytocin system—known for its critical role in mammalian sociality—as a system sensitive to its early environment and subject to epigenetic change. Recent animal work suggests that early parental care is associated with changes in DNA methylation of conserved regulatory sites within the oxytocin receptor gene ( OXTR m). Through dyadic modeling of behavior and OXTR m status across the first year and a half of life, we translated these findings to 101 human mother-infant dyads. We show that OXTR m is dynamic in infancy and its change is predicted by maternal engagement and reflective of behavioral temperament. We provide evidence for an early window of environmental epigenetic regulation of the oxytocin system, facilitating the emergence of individual differences in human behavior.more » « less
-
Abstract Parents use joint attention to direct infants to environmental stimuli. We hypothesized that infants whose parents provide more bids for joint attention will display a more complex neural response when viewing social scenes. Sixty‐one 8‐month‐old infants underwent electroencephalography (EEG) while viewing videos of joint‐ and parallel‐play and participated in a free play interaction. EEG data was analyzed using multiscale entropy, which quantifies neural variability. Free play interactions assessed parent alternating gaze, a behavioral mechanism for directing attention to environmental cues. We found a significant positive association between parent alternating gaze and neural entropy in frontal and central regions. These results suggest a relationship between parent behavior and infant neural mechanisms that regulate social attention, underlying the importance of parental cues in forming neural networks.more » « less
-
Abstract The current longitudinal study (n = 98) utilized a developmental cognitive neuroscience approach to examine whether and how variability in social perception is linked to social behavior in early human development. Cortical responses to processing dynamic faces were investigated using functional near-infrared spectroscopy at 7 months. Individual differences in sociability were measured using the Early Childhood Behavior Questionnaire at 18 months. Confirming previous work with infants and adults, functional near-infrared spectroscopy results show that viewing changing faces recruited superior temporal cortices in 7-month-old infants, adding to the view that this brain system is specialized in social perception from early in ontogeny. Our longitudinal results show that greater engagement of the right superior temporal cortex at 7 months predicts higher levels of sociability at 18 months. This suggests that early variability in social perception is linked to later differences in overtly displayed social behavior, providing novel longitudinal evidence for a social brain–behavior association.more » « less
-
Abstract Infancy is a sensitive period of development, during which experiences of parental care are particularly important for shaping the developing brain. In a longitudinal study ofN = 95 mothers and infants, we examined links between caregiving behavior (maternal sensitivity observed during a mother–infant free‐play) and infants’ neural response to emotion (happy, angry, and fearful faces) at 5 and 7 months of age. Neural activity was assessed using functional Near‐Infrared Spectroscopy (fNIRS) in the dorsolateral prefrontal cortex (dlPFC), a region involved in cognitive control and emotion regulation. Maternal sensitivity was positively correlated with infants’ neural responses tohappyfaces in the bilateral dlPFC and was associated with relative increases in such responses from 5 to 7 months. Multilevel analyses revealed caregiving‐related individual differences in infants’ neural responses to happy compared to fearful faces in the bilateral dlPFC, as well as other brain regions. We suggest that variability in dlPFC responses to emotion in the developing brain may be one correlate of early experiences of caregiving, with implications for social‐emotional functioning and self‐regulation. Research HighlightsInfancy is a sensitive period of brain development, during which experiences with caregivers are especially important.This study examined links between sensitive maternal care and infants’ neural responses to emotion at 5–7 months of age, using functional near‐infrared spectroscopy (fNIRS).Experiences of sensitive care were associated with infants’ neural responses to emotion—particularly happy faces—in the dorsolateral prefrontal cortex.more » « less
An official website of the United States government

