skip to main content


Title: Optogenetic stimulation of striatal patches modifies habit formation and inhibits dopamine release
Abstract Habits are inflexible behaviors that develop after extensive repetition, and overreliance on habits is a hallmark of many pathological states. The striatum is involved in the transition from flexible to inflexible responding, and interspersed throughout the striatum are patches, or striosomes, which make up ~15% of the volume of the striatum relative to the surrounding matrix compartment. Previous studies have suggested that patches are necessary for normal habit formation, but it remains unknown exactly how patches contribute to habit formation and expression. Here, using optogenetics, we stimulated striatal patches in Sepw1-NP67 mice during variable interval training (VI60), which is used to establish habitual responding. We found that activation of patches at reward retrieval resulted in elevated responding during VI60 training by modifying the pattern of head entry and pressing. Further, this optogenetic manipulation reduced subsequent responding following reinforcer devaluation, suggesting modified habit formation. However, patch stimulation did not generally increase extinction rates during a subsequent extinction probe, but did result in a small ‘extinction burst’, further suggesting goal-directed behavior. On the other hand, this manipulation had no effect in omission trials, where mice had to withhold responses to obtain rewards. Finally, we utilized fast-scan cyclic voltammetry to investigate how patch activation modifies evoked striatal dopamine release and found that optogenetic activation of patch projections to the substantia nigra pars compacta (SNc) is sufficient to suppress dopamine release in the dorsal striatum. Overall, this work provides novel insight into the role of the patch compartment in habit formation, and provides a potential mechanism for how patches modify habitual behavior by exerting control over dopamine signaling.  more » « less
Award ID(s):
1828041
NSF-PAR ID:
10300569
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    When pursuing desirable outcomes, one must make the decision between exploring possible actions to obtain those outcomes and exploiting known strategies to maximize efficiency. The dorsolateral striatum (DLS) has been extensively studied with respect to how actions can develop into habits and has also been implicated as an area involved in governing exploitative behavior. Surprisingly, prior work has shown that DLS cholinergic interneurons (ChIs) are not involved in the canonical habit formation function ascribed to the DLS but are instead modulators of behavioral flexibility after initial learning. To further probe this, we evaluated the role of DLS ChIs in behavioral exploration during a brief instrumental training experiment. Through designer receptors exclusively activated by designer drugs (DREADDs) in ChAT‐Cre rats, ChIs in the DLS were inhibited during specific phases of the experiment: instrumental training, free‐reward delivery, at both times, or never. Without ChI activity during instrumental training, animals biased their responding toward an “optimal” strategy while continuing to work efficiently. This effect was observed again when contingencies were removed as animals with ChIs offline during that phase, regardless of ChI inhibition previously, decreased responding more than animals with ChIs intact. These findings build upon a growing body of literature implicating ChIs in the striatum as gate‐keepers of behavioral flexibility and exploration.

     
    more » « less
  2. Abstract

    Dopamine has been implicated in circadian timing underlying the food entrainable oscillator (FEO) circuitry and overexpression of the dopamine D2 receptor (D2R) in the striatum has been reported to reduce motivation to obtain food rewards in operant tasks. In the present study, we explored both of these mechanisms by examining food anticipatory activity (FAA) in dopamine D2 receptor‐overexpressing (D2R‐OE) mice under various durations of food availability. First, we noted that at baseline, there were no differences between D2R‐OEmice and their littermates in activity level, food intake, and body weight or in circadian activity. Under conditions of very restricted food availability (4 or 6 hr), both genotypes displayedFAA. In contrast, under 8‐hr food availability, control mice showedFAA, but D2R‐OEmice did not. Normalization of D2R by administration of doxycycline, a tetracycline analogue, rescuedFAAunder 8‐hr restricted food. We next tested for circadian regulation ofFAA. When given ad libitum access to food, neither D2R‐OEnor controls were active during the daytime. However, after an interval of food restriction, all mice showed elevated locomotor activity at the time of previous food availability in the day, indicating circadian timing of anticipatory activity. In summary, motivation is reduced in D2R‐OEmice but circadian timing behavior is not affected. We conclude that an increase in striatal D2R reducesFAAby modulating motivation and not by acting on a clock mechanism.

     
    more » « less
  3. The anterior dorsolateral striatum (DLS) is heavily innervated by convergent excitatory projections from the primary motor (M1) and sensory cortex (S1) and considered an important site of sensorimotor integration. M1 and S1 corticostriatal synapses have functional differences in their connection strength with striatal spiny projection neurons (SPNs) and fast-spiking interneurons (FSIs) in the DLS and, as a result, exert distinct influences on sensory-guided behaviors. In the present study, we tested whether M1 and S1 inputs exhibit differences in the subcellular anatomical distribution of striatal neurons. We injected adeno-associated viral vectors encoding spaghetti monster fluorescent proteins (sm.FPs) into M1 and S1 in male and female mice and used confocal microscopy to generate 3D reconstructions of corticostriatal inputs to single identified SPNs and FSIs obtained through ex vivo patch clamp electrophysiology. We found that M1 and S1 dually innervate SPNs and FSIs; however, there is a consistent bias towards the M1 input in SPNs that is not found in FSIs. In addition, M1 and S1 inputs were distributed similarly across the proximal, medial, and distal regions of SPN and FSI dendrites. Notably, closely localized M1 and S1 clusters of inputs were more prevalent in SPNs than FSIs, suggesting that cortical inputs are integrated through cell-type specific mechanisms. Our results suggest that the stronger functional connectivity from M1 to SPNs compared to S1, as previously observed, is due to a higher quantity of synaptic inputs. Our results have implications for how sensorimotor integration is performed in the striatum through cell-specific differences in corticostriatal connections.

     
    more » « less
  4. Abstract

    Cortico‐basal ganglia‐thalamic (CBT) β oscillations (15–30 Hz) are elevated in Parkinson's disease and correlated with movement disability. To date, no experimental paradigm outside of loss of dopamine has been able to specifically elevate β oscillations in theCBTloop. Here, we show that activation of striatal cholinergic receptors selectively increased β oscillations in mouse striatum and motor cortex. In individuals showing simultaneous β increases in both striatum and M1, β partial directed coherence (PDC) increased from striatum to M1 (but not in the reverse direction). In individuals that did not show simultaneous β increases, βPDCincreased from M1 to striatum (but not in the reverse direction), and M1 was characterized by persistent β‐high frequency oscillation phase–amplitude coupling. Finally, the direction of βPDCdistinguished between β sub‐bands. This suggests that (1) striatal cholinergic tone exerts state‐dependent and frequency‐selective control overCBTβ power and coordination; (2) ongoing rhythmic dynamics can determine whether elevated β oscillations are expressed in striatum and M1; and (3) altered striatal cholinergic tone differentially modulates distinct β sub‐bands.

     
    more » « less
  5. There is an ongoing debate on the contribution of the neuronal glutamate transporter EAAC1 to the onset of compulsive behaviors. Here, we used behavioral, electrophysiological, molecular, and viral approaches in male and female mice to identify the molecular and cellular mechanisms by which EAAC1 controls the execution of repeated motor behaviors. Our findings show that, in the striatum, a brain region implicated with movement execution, EAAC1 limits group I metabotropic glutamate receptor (mGluRI) activation, facilitates D1 dopamine receptor (D1R) expression, and ensures long-term synaptic plasticity. Blocking mGluRI in slices from mice lacking EAAC1 restores D1R expression and synaptic plasticity. Conversely, activation of intracellular signaling pathways coupled to mGluRI in D1R-containing striatal neurons of mice expressing EAAC1 leads to reduced D1R protein level and increased stereotyped movement execution. These findings identify new molecular mechanisms by which EAAC1 can shape glutamatergic and dopaminergic signals and control repeated movement execution. 
    more » « less