skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Modeling stem cell nucleus mechanics using confocal microscopy
Nuclear mechanics is emerging as a key component of stem cell function and differentiation. While changes in nuclear structure can be visually imaged with confocal microscopy, mechanical characterization of the nucleus and its sub-cellular components require specialized testing equipment. A computational model permitting cell-specific mechanical information directly from confocal and atomic force microscopy of cell nuclei would be of great value. Here, we developed a computational framework for generating finite element models of isolated cell nuclei from multiple confocal microscopy scans and simple atomic force microscopy (AFM) tests. Confocal imaging stacks of isolated mesenchymal stem cells were converted into finite element models and siRNA-mediated Lamin A/C depletion isolated chromatin and Lamin A/C structures. Using AFM-measured experimental stiffness values, a set of conversion factors were determined for both chromatin and Lamin A/C to map the voxel intensity of the original images to the element stiffness, allowing the prediction of nuclear stiffness in an additional set of other nuclei. The developed computational framework will identify the contribution of a multitude of sub-nuclear structures and predict global nuclear stiffness of multiple nuclei based on simple nuclear isolation protocols, confocal images and AFM tests.  more » « less
Award ID(s):
2025505 1929188
NSF-PAR ID:
10300623
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Biomechanics and Modeling in Mechanobiology
ISSN:
1617-7959
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Discher, Dennis (Ed.)

    The LMNA gene encodes the nuclear envelope proteins Lamins A and C, which comprise a major part of the nuclear lamina, provide mechanical support to the nucleus, and participate in diverse-intracellular signaling. LMNA mutations give rise to a collection of diseases called laminopathies, including dilated cardiomyopathy ( LMNA-DCM) and muscular dystrophies. Although nuclear deformities are a hallmark of LMNA-DCM, the role of nuclear abnormalities in the pathogenesis of -DCM remains incompletely understood. Using induced-pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from LMNA-mutant patients and healthy controls, we show that LMNA mutant iPSC-CM nuclei have altered shape or increased size compared with healthy control iPSC-CM nuclei. The LMNA mutation exhibiting the most severe nuclear deformities, R249Q, additionally caused reduced nuclear stiffness and increased nuclear fragility. Importantly, for all cell lines, the degree of nuclear abnormalities corresponded to the degree of Lamin A/C and Lamin B1 mislocalization from the nuclear envelope. The mislocalization was likely due to altered assembly of Lamin A/C. Collectively, these results point to the importance of correct lamin assembly at the nuclear envelope in providing mechanical stability to the nucleus and suggests that defects in nuclear lamina organization may contribute to the nuclear and cellular dysfunction in LMNA-DCM.

     
    more » « less
  2. null (Ed.)
    Mesenchymal stem cells (MSCs) maintain the musculoskeletal system by differentiating into multiple lineages, including osteoblasts and adipocytes. Mechanical signals, including strain and low-intensity vibration (LIV), are important regulators of MSC differentiation via control exerted through the cell structure. Lamin A/C is a protein vital to the nuclear architecture that supports chromatin organization and differentiation and contributes to the mechanical integrity of the nucleus. We investigated whether lamin A/C and mechanoresponsiveness are functionally coupled during adipogenesis in MSCs. siRNA depletion of lamin A/C increased the nuclear area, height, and volume and decreased the circularity and stiffness. Lamin A/C depletion significantly decreased markers of adipogenesis (adiponectin, cellular lipid content) as did LIV treatment despite depletion of lamin A/C. Phosphorylation of focal adhesions in response to mechanical challenge was also preserved during loss of lamin A/C. RNA-seq showed no major adipogenic transcriptome changes resulting from LIV treatment, suggesting that LIV regulation of adipogenesis may not occur at the transcriptional level. We observed that during both lamin A/C depletion and LIV, interferon signaling was downregulated, suggesting potentially shared regulatory mechanism elements that could regulate protein translation. We conclude that the mechanoregulation of adipogenesis and the mechanical activation of focal adhesions function independently from those of lamin A/C. 
    more » « less
  3. Abstract

    Migrating cells must deform their stiff cell nucleus to move through pores and fibers in tissue. Lamin A/C is known to hinder cell migration by limiting nuclear deformation and passage through confining channels, but its role in nuclear deformation and passage through fibrous environments is less clear. Cell and nuclear migration through discrete, closely spaced, slender obstacles which mimic the mechanical properties of collagen fibers are studied. Nuclei bypass slender obstacles while preserving their overall morphology by deforming around them with deep local invaginations of little resisting force. The obstacles do not impede the nuclear trajectory and do not cause rupture of the nuclear envelope. Nuclei likewise deform around single collagen fibers in cells migrating in 3D collagen gels. In contrast to its limiting role in nuclear passage through confining channels, lamin A/C facilitates nuclear deformation and passage through fibrous environments; nuclei in lamin‐null (Lmna−/−) cells lose their overall morphology and become entangled on the obstacles. Analogous to surface tension‐mediated deformation of a liquid drop, lamin A/C imparts a surface tension on the nucleus that allows nuclear invaginations with little mechanical resistance, preventing nuclear entanglement and allowing nuclear passage through fibrous environments.

     
    more » « less
  4. Abstract

    The mechanical properties of the cellular nucleus are extensively studied as they play a critical role in important processes, such as cell migration, gene transcription, and stem cell differentiation. While the mechanical properties of the isolated nucleus have been tested, there is a lack of measurements about the mechanical behavior of the nucleus within intact cells and specifically about the interplay of internal nuclear components with the intracellular microenvironment, because current testing methods are based on contact and only allow studying the nucleus after isolation from a cell or disruption of cytoskeleton. Here, all‐optical Brillouin microscopy and 3D chemomechanical modeling are used to investigate the regulation of nuclear mechanics in physiological conditions. It is observed that the nuclear modulus can be modulated by epigenetic regulation targeting internal nuclear nanostructures such as lamin A/C and chromatin. It is also found that nuclear modulus is strongly regulated by cytoskeletal behavior through a robust mechanism conserved in different culturing conditions. Given the active role of cytoskeletal modulation in nearly all cell functions, this work will enable to reveal highly relevant mechanisms of nuclear mechanical regulations in physiological and pathological conditions.

     
    more » « less
  5. Abstract

    Recent developments such as multi-harmonic Atomic Force Microscopy (AFM) techniques have enabled fast, quantitative mapping of nanomechanical properties of living cells. Due to their high spatiotemporal resolution, these methods provide new insights into changes of mechanical properties of subcellular structures due to disease or drug response. Here, we propose three new improvements to significantly improve the resolution, identification, and mechanical property quantification of sub-cellular and sub-nuclear structures using multi-harmonic AFM on living cells. First, microcantilever tips are streamlined using long-carbon tips to minimize long-range hydrodynamic interactions with the cell surface, to enhance the spatial resolution of nanomechanical maps and minimize hydrodynamic artifacts. Second, simultaneous Spinning Disk Confocal Microscopy (SDC) with live-cell fluorescent markers enables the unambiguous correlation between observed heterogeneities in nanomechanical maps with subcellular structures. Third, computational approaches are then used to estimate the mechanical properties of sub-nuclear structures. Results are demonstrated on living NIH 3T3 fibroblasts and breast cancer MDA-MB-231 cells, where properties of nucleoli, a deep intracellular structure, were assessed. The integrated approach opens the door to study the mechanobiology of sub-cellular structures during disease or drug response.

     
    more » « less