skip to main content

Title: Drivers of Dissolved Organic Carbon Mobilization From Forested Headwater Catchments: A Multi Scaled Approach
Understanding and predicting catchment responses to a regional disturbance is difficult because catchments are spatially heterogeneous systems that exhibit unique moderating characteristics. Changes in precipitation composition in the Northeastern U.S. is one prominent example, where reduction in wet and dry deposition is hypothesized to have caused increased dissolved organic carbon (DOC) export from many northern hemisphere forested catchments; however, findings from different locations contradict each other. Using shifts in acid deposition as a test case, we illustrate an iterative “process and pattern” approach to investigate the role of catchment characteristics in modulating the steam DOC response. We use a novel dataset that integrates regional and catchment-scale atmospheric deposition data, catchment characteristics and co-located stream Q and stream chemistry data. We use these data to investigate opportunities and limitations of a pattern-to-process approach where we explore regional patterns of reduced acid deposition, catchment characteristics and stream DOC response and specific soil processes at select locations. For pattern investigation, we quantify long-term trends of flow-adjusted DOC concentrations in stream water, along with wet deposition trends in sulfate, for USGS headwater catchments using Seasonal Kendall tests and then compare trend results to catchment attributes. Our investigation of climatic, topographic, and hydrologic catchment attributes vs. directionality of DOC trends suggests soil depth and catchment connectivity as possible modulating factors for DOC concentrations. This informed our process-to-pattern investigation, in which we experimentally simulated increased and decreased acid deposition on soil cores from catchments of contrasting long-term DOC response [Sleepers River Research Watershed (SRRW) for long-term increases in DOC and the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO) for long-term decreases in DOC]. SRRW soils generally released more DOC than SSHCZO soils and losses into recovery solutions were higher. Scanning electron microscope imaging indicates a significant DOC contribution from destabilizing soil aggregates mostly from hydrologically disconnected landscape positions. Results from this work illustrate the value of an iterative process and pattern approach to understand catchment-scale response to regional disturbance and suggest opportunities for further investigations.  more » « less
Award ID(s):
1724171 2012123
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Water
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The concurrent reduction in acid deposition and increase in precipitation impact stream solute dynamics in complex ways that make predictions of future water quality difficult. To understand how changes in acid deposition and precipitation have influenced dissolved organic carbon (DOC) and nitrogen (N) loading to streams, we investigated trends from 1991 to 2018 in stream concentrations (DOC, ~3,800 measurements), dissolved organic nitrogen (DON, ~1,160 measurements), and dissolved inorganic N (DIN, ~2,130 measurements) in a forested watershed in Vermont, USA. Our analysis included concentration-discharge (C-Q) relationships and Seasonal Mann-Kendall tests on long-term, flow-adjusted concentrations. To understand whether hydrologic flushing and changes in acid deposition influenced long-term patterns by liberating DOC and dissolved N from watershed soils, we measured their concentrations in the leachate of 108 topsoil cores of 5 cm diameter that we flushed with solutions simulating high and low acid deposition during four different seasons. Our results indicate that DOC and DON often co-varied in both the long-term stream dataset and the soil core experiment. Additionally, leachate from winter soil cores produced especially high concentrations of all three solutes. This seasonal signal was consistent with C-Q relation showing that organic materials (e.g., DOC and DON), which accumulate during winter, are flushed into streams during spring snowmelt. Acid deposition had opposite effects on DOC and DON compared to DIN in the soil core experiment. Low acid deposition solutions, which mimic present day precipitation, produced the highest DOC and DON leachate concentrations. Conversely, high acid deposition solutions generally produced the highest DIN leachate concentrations. These results are consistent with the increasing trend in stream DOC concentrations and generally decreasing trend in stream DIN we observed in the long-term data. These results suggest that the impact of acid deposition on the liberation of soil carbon (C) and N differed for DOC and DON vs. DIN, and these impacts were reflected in long-term stream chemistry patterns. As watersheds continue to recover from acid deposition, stream C:N ratios will likely continue to increase, with important consequences for stream metabolism and biogeochemical processes. 
    more » « less
  2. Abstract

    Research at long‐term catchment monitoring sites has generated a great volume, variety, and velocity of data for analysis of stream water chemistry dynamics. To harness the potential of these big data and extract patterns that are indicative of underlying functional relationships, machine learning tools have advantages over traditional statistical methods, and are increasingly being applied for dimension reduction, feature extraction, and trend identification. Still, as examples of complex systems, catchments are characterized by multivariate factor interactions and equifinality that are not easily identified by most machine‐learning methods. Using dissolved organic carbon (DOC) dynamics as an illustration, we applied a new evolutionary algorithm (EA) to extract geologic, topographic, meteorologic, hydrologic, and land use attributes that were correlated to mean stream DOC concentration in forested catchments distributed across the continental United States. The EA reduced dimensionality of our attribute dataset to identify the combination of factors, and their specific value ranges, that interacted to drive membership in High or Low mean DOC clusters. High mean DOC concentrations were associated with two distinct geographic locations of variable climatic and vegetative conditions, indicating equifinality. Our findings underscore the importance of critical zone structure in mediating hydrological and biogeochemical processes to govern DOC dynamics at the catchment scale. This multi‐scale, pattern‐to‐process approach is being applied to refine hypotheses for process‐based modeling of DOC dynamics in forested headwater streams at catchment to site scales.

    more » « less
  3. Abstract

    Ecosystems constantly adjust to altered biogeochemical inputs, changes in vegetation and climate, and previous physical disturbances. Such disturbances create overlapping ‘biogeochemical legacies’ affecting modern nutrient mass balances. To understand how ‘legacies’ affected watershed‐ecosystem (WEC) biogeochemistry during five decades of studies within the Hubbard Brook Experimental Forest (HBEF), we extended biogeochemical trends and hydrologic fluxes back to 1900 to provide an historical framework for our long‐term studies. This reconstruction showed acid rain peaking at HBEF in the late 1960s‐early 1970s near the beginning of the Hubbard Brook Ecosystem Study (HBES). The long‐term, parabolic arc in acid inputs to HBEF generated a corresponding arc in the ionic strength of stream water, with acid inputs generating increased losses of H+and soil base cations between 1963 and 1969 and then decreased losses after 1970. Nitrate release after disturbance is coupled with previous N‐deposition and storage, biological uptake, and hydrology. Sulfur was stored in soils from decades of acid deposition but is now nearly depleted. Total exports of base cations from the soil exchange pool represent one of the largest disturbances to forest and associated aquatic ecosystems at the HBEF since the Pleistocene glaciation. Because precipitation inputs of base cations currently are extremely small, such losses can only be replaced through the slow process of mineral weathering. Thus, the chemistry of stream water is extremely dilute and likely to become even more dilute than pre‐Industrial Revolution estimates. The importance of calculating chemical fluxes is clearly demonstrated in reconstruction of acid rain impacts during the pre‐measurement period. The aggregate impact of acid rain on WEC exports is far larger than historical forest harvest effects, and even larger than the most severe deforestation experiment (Watershed 2) at HBEF. A century of acid rain had a calcium stripping impact equivalent totwoW2 experiments involving complete deforestation and herbicide applications.

    more » « less
  4. Abstract. Solute concentrations in stream water vary with discharge in patterns that record complex feedbacks between hydrologic and biogeochemical processes. In a comparison of three shale-underlain headwater catchments located in Pennsylvania, USA (the forested Shale Hills Critical Zone Observatory), and Wales, UK (the peatland-dominated Upper Hafren and forest-dominated Upper Hore catchments in the Plynlimon forest), dissimilar concentration–discharge (CQ) behaviors are best explained by contrasting landscape distributions of soil solution chemistry – especially dissolved organic carbon (DOC) – that have been established by patterns of vegetation and soil organic matter (SOM). Specifically, elements that are concentrated in organic-rich soils due to biotic cycling (Mn, Ca, K) or that form strong complexes with DOC (Fe, Al) are spatially heterogeneous in pore waters because organic matter is heterogeneously distributed across the catchments. These solutes exhibit non-chemostatic behavior in the streams, and solute concentrations either decrease (Shale Hills) or increase (Plynlimon) with increasing discharge. In contrast, solutes that are concentrated in soil minerals and form only weak complexes with DOC (Na, Mg, Si) are spatially homogeneous in pore waters across each catchment. These solutes are chemostatic in that their stream concentrations vary little with stream discharge, likely because these solutes are released quickly from exchange sites in the soils during rainfall events. Furthermore, concentration–discharge relationships of non-chemostatic solutes changed following tree harvest in the Upper Hore catchment in Plynlimon, while no changes were observed for chemostatic solutes, underscoring the role of vegetation in regulating the concentrations of certain elements in the stream. These results indicate that differences in the hydrologic connectivity of organic-rich soils to the stream drive differences in concentration behavior between catchments. As such, in catchments where SOM is dominantly in lowlands (e.g., Shale Hills), we infer that non-chemostatic elements associated with organic matter are released to the stream early during rainfall events, whereas in catchments where SOM is dominantly in uplands (e.g., Plynlimon), these non-chemostatic elements are released later during rainfall events. The distribution of SOM across the landscape is thus a key component for predictive models of solute transport in headwater catchments.

    more » « less
  5. Abstract

    Dissolved organic carbon (DOC) and nitrogen (DON) are important energy and nutrient sources for aquatic ecosystems. In many northern temperate, freshwater systems DOC has increased in the past 50 years. Less is known about how changes in DOC may vary across latitudes, and whether changes in DON track those of DOC. Here, we present long‐term DOC and DON data from 74 streams distributed across seven sites in biomes ranging from the tropics to northern boreal forests with varying histories of atmospheric acid deposition. For each stream, we examined the temporal trends of DOC and DON concentrations and DOC:DON molar ratios. While some sites displayed consistent positive or negative trends in stream DOC and DON concentrations, changes in direction or magnitude were inconsistent at regional or local scales. DON trends did not always track those of DOC, though DOC:DON ratios increased over time for ~30% of streams. Our results indicate that the dissolved organic matter (DOM) pool is experiencing fundamental changes due to the recovery from atmospheric acid deposition. Changes in DOC:DON stoichiometry point to a shifting energy‐nutrient balance in many aquatic ecosystems. Sustained changes in the character of DOM can have major implications for stream metabolism, biogeochemical processes, food webs, and drinking water quality (including disinfection by‐products). Understanding regional and global variation in DOC and DON concentrations is important for developing realistic models and watershed management protocols to effectively target mitigation efforts aimed at bringing DOM flux and nutrient enrichment under control.

    more » « less