Interactive microbial communities are ubiquitous, influencing biogeochemical cycles and host health. One widespread interaction is nutrient exchange, or cross-feeding, wherein metabolites are transferred between microbes. Some cross-fed metabolites, such as vitamins, amino acids, and ammonium (NH4+), are communally valuable and impose a cost on the producer. The mechanisms that enforce cross-feeding of communally valuable metabolites are not fully understood. Previously we engineered a cross-feeding coculture between N2-fixing Rhodopseudomonas palustris and fermentative Escherichia coli. Engineered R. palustris excretes essential nitrogen as NH4+ to E. coli, while E. coli excretes essential carbon as fermentation products to R. palustris. Here, we sought tomore »
Extracellular Metabolism Sets the Table for Microbial Cross-Feeding
SUMMARY The transfer of nutrients between cells, or cross-feeding, is a ubiquitous feature of microbial communities with emergent properties that influence our health and orchestrate global biogeochemical cycles. Cross-feeding inevitably involves the externalization of molecules. Some of these molecules directly serve as cross-fed nutrients, while others can facilitate cross-feeding. Altogether, externalized molecules that promote cross-feeding are diverse in structure, ranging from small molecules to macromolecules. The functions of these molecules are equally diverse, encompassing waste products, enzymes, toxins, signaling molecules, biofilm components, and nutrients of high value to most microbes, including the producer cell. As diverse as the externalized and transferred molecules are the cross-feeding relationships that can be derived from them. Many cross-feeding relationships can be summarized as cooperative but are also subject to exploitation. Even those relationships that appear to be cooperative exhibit some level of competition between partners. In this review, we summarize the major types of actively secreted, passively excreted, and directly transferred molecules that either form the basis of cross-feeding relationships or facilitate them. Drawing on examples from both natural and synthetic communities, we explore how the interplay between microbial physiology, environmental parameters, and the diverse functional attributes of extracellular molecules can influence cross-feeding dynamics. more »
- Award ID(s):
- 1749489
- Publication Date:
- NSF-PAR ID:
- 10300842
- Journal Name:
- Microbiology and Molecular Biology Reviews
- Volume:
- 85
- Issue:
- 1
- ISSN:
- 1092-2172
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Beyond being simply positive or negative, beneficial or inhibitory, microbial interactions can involve a diverse set of mechanisms, dependencies and dynamical properties. These more nuanced features have been described in great detail for some specific types of interactions, (e.g. pairwise metabolic cross-feeding, quorum sensing or antibiotic killing), often with the use of quantitative measurements and insight derived from modeling. With a growing understanding of the composition and dynamics of complex microbial communities for human health and other applications, we face the challenge of integrating information about these different interactions into comprehensive quantitative frameworks. Here, we review the literature onmore »
-
Abstract The chemical ecology and chemical defenses of sponges have been investigated for decades; consequently, sponges are among the best understood marine organisms in terms of their chemical ecology, from the level of molecules to ecosystems. Thousands of natural products have been isolated and characterized from sponges, and although relatively few of these compounds have been studied for their ecological functions, some are known to serve as chemical defenses against predators, microorganisms, fouling organisms, and other competitors. Sponges are hosts to an exceptional diversity of microorganisms, with almost 40 microbial phyla found in these associations to date. Microbial community compositionmore »
-
Bernstein, Hans C. (Ed.)ABSTRACT Interactions between vibrio bacteria and the planktonic community impact marine ecology and human health. Many coastal Vibrio spp. can infect humans, representing a growing threat linked to increasing seawater temperatures. Interactions with eukaryotic organisms may provide attachment substrate and critical nutrients that facilitate the persistence, diversification, and spread of pathogenic Vibrio spp. However, vibrio interactions with planktonic organisms in an environmental context are poorly understood. We quantified the pathogenic Vibrio species V. cholerae , V. parahaemolyticus , and V. vulnificus monthly for 1 year at five sites and observed high abundances, particularly during summer months, with species-specific temperature andmore »
-
ABSTRACT Microbes face a trade-off between being metabolically independent and relying on neighboring organisms for the supply of some essential metabolites. This balance of conflicting strategies affects microbial community structure and dynamics, with important implications for microbiome research and synthetic ecology. A “gedanken” (thought) experiment to investigate this trade-off would involve monitoring the rise of mutual dependence as the number of metabolic reactions allowed in an organism is increasingly constrained. The expectation is that below a certain number of reactions, no individual organism would be able to grow in isolation and cross-feeding partnerships and division of labor would emerge. Wemore »