skip to main content

Title: Examining Mobility Among People Living with HIV in Rural Areas
The rise of ridesharing platforms has transformed traditional transportation, making it more accessible for getting to work and accessing grocery stores and healthcare providers, which are essential to physical and mental well-being. However, such technologies are not available everywhere. Additionally, there is a scarcity of HCI work that investigates how vulnerable populations such as rural-dwelling people with HIV face and overcome transportation barriers. To extend past research, we conducted 31 surveys and 18 interviews with people living with HIV (22 surveys, 14 interviews) and their case coordinators (9 surveys, 4 interviews) in rural areas. Contrary to past research, we found that the use of alternative vehicles, extensive support networks, and nonprofit health organizations facilitated transportation. However, distance, the lack of trust and infrastructure, stigma, and other cultural underpinnings made popular forms of urban transportation unappealing. We contextualize our findings with prior research and contribute implications for future research and design.
Authors:
; ; ; ; ; ;
Award ID(s):
1909700
Publication Date:
NSF-PAR ID:
10300970
Journal Name:
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
Page Range or eLocation-ID:
1 to 17
Sponsoring Org:
National Science Foundation
More Like this
  1. Transportation has evolved throughout the past several years through developments in HCI and sociotechnical systems. However, there has been a lack of studies examining transportation in rural areas for vulnerable populations. Our study focuses on the transportation facilitators and barriers faced by people living with HIV in rural areas. We were informed through 31 surveys and 18 interviews with people living with HIV in rural areas and their case coordinators. We highlight the importance of utilizing a patchwork of transportation methods and having social networks to support transportation needs. Emerging, popular forms of urban transportation do not translate well due to differences in trust, infrastructure, rural culture, and stigma.
  2. Abstract Background

    Sustainable Development Goal (SDG) 7 calls for the adoption and continued use of clean-burning stoves by the 2.9 billion people relying on unclean fuels (both solid biomass and kerosene). However, to date, the clean cooking literature has found low rates of efficient stove adoption and continued use. This paper presents the application of a public health community engagement model to the use of clean cooking fuels. We implemented a pilot study with Community Technology Workers (CTWs) as a means to overcome maintenance, education, and behavioral barriers to clean fuel use in rural Tanzania.

    Methods

    The intervention was a free 6 kg Liquified Petroleum Gas (LPG) cylinder and stove coupled with education from a local technically trained CTW on LPG use. We evaluated the training, work, and impact of a CTW on LPG use on 30 randomly selected households from two villages in a rural district of Tanzania over a 1-year period. After an initial baseline survey, technically trained local CTWs educated the households on safe LPG use and conducted 34 follow up surveys over the next year on their cooking fuel use. Additionally, we conducted qualitative interviews with all households and a focus group with six of the households.

    Results

    The resultsmore »from the mixed methods approach show that 80% of families (n = 24) consistently refilled their LPG cylinders and ~ 40% of households exclusively used LPG. Households reported appreciating the CTWs’ visits for providing education and maintenance support, giving them confidence to use LPG safely, reminding them to save for their cylinder, and providing a community driven effort to use clean fuel.

    Conclusions

    The findings demonstrate the feasibility of this type of community infrastructure model to promote and facilitate consistent LPG use, but suggest the need to couple this local support with financial mechanisms (e.g., a microsavings program). This model could be a mechanism to increase LPG use, particularly in rural, low-income areas.

    « less
  3. Energy costs are large and increasing in rural Alaska communities, so communities are turning to renewable energy. While, many of these communities have a mixed subsistence-cash economy, the relationship between renewable energy and subsistence has not been studied. Tanana, Alaska has a biomass program and we conducted interviews with 61 households in 2017 to understand how residents perceive the program and its association with subsistence activities. We analyzed Alaska Department of Fish & Game subsistence surveys from 89 communities to estimate differences in subsistence harvest between households that harvest wood and those that do not. Interviews indicated that people who harvest wood for the biomass program were six times more likely to engage in subsistence. Subsistence harvests were nearly double (184 kg/per capita) in households that harvested wood for personal use versus those that did not (101 kg/per capita). Equipment used for both activities was similar, and 57% respondents combined wood harvesting with other activities (e.g. subsistence, travel, etc.). Higher household incomes and employment were positively associated with subsistence participation (p < 0.001) while only household incomes was positively associated with wood harvest through the biomass program (p < 0.001). Overall, the program was perceived as having a positive effectmore »(69%) for the community because it has created jobs (36%), saved people money (23%), promoted sharing (16%), and reduced fuel use by the community (15%). Our research shows that biomass programs have the potential to complement subsistence activities and enhance the sustainability of communities in rural Alaska that are faced with high energy costs.« less
  4. One significant barrier to broadening participation in engineering and recruiting future engineers is the pervasive lack of understanding or even misunderstanding of what engineering is and what engineers do. The challenges to broadening participation in engineering are further complicated as underrepresented groups often report constructs, such as cultural milieu and outcome expectations, as more important than interest in influencing career choices. Addressing such issues is difficult and single exposure interventions are unlikely to make engineering careers seem more relevant or attainable for most students. More sustainable interventions, designed to (1) challenge misperceptions and create relevant conceptions of engineering; (2) maintain and expand situational interest; and, (3) integrate with individual interests, values, and social identities, appear to hold more promise for creating significant change. As a possible means of developing more sustainable interventions, our ITEST project partners researchers, teachers, and local industry representatives in creating a series (approximately 6 across an academic year) of engineering-related learning activities for middle school children in three school systems in or near rural Appalachia. Across the first year of implementation, we involved nine teachers, six people working at three different companies and more than 500 students with a series of activities in each classroom. Tomore »examine the impact of our project, we are using mixed methods, including interviews, surveys, classroom observations, and classroom artifacts gathered from multiple project stakeholders, to answer the following research questions: RQ 1: How do participants conceptualize engineering careers? How and why do such perceptions shift throughout the project? RQ 2: What elements of the targeted intervention affect student motivation towards engineering careers specifically with regard to developing competencies and ability beliefs regarding engineering? RQ 3: How can strategic collaboration between K12 and industry promote a shift in teacher’s conceptions of engineers and increased self-efficacy in building and delivering engineering curriculum? RQ 4: How do stakeholder characteristics, perceptions, and dynamics affect the likelihood of sustainability in strategic collaborations between K12 and industry stakeholders? How do prevailing institutional and collaborative conditions mediate sustainability? Our findings to date offer insights across all research questions and have important implications for stakeholders hoping to raise awareness of engineering among youth, particularly in rural areas.« less
  5. Broadening participation in engineering is critical given the gap between the nation’s need for engineering graduates and its production of them. Efforts to spark interest in engineering among PreK-12 students have increased substantially in recent years as a result. However, past research has demonstrated that interest is not always sufficient to help students pursue engineering majors, particularly for rural students. In many rural communities, influential adults (family, friends, teachers) are often the primary influence on career choice, while factors such as community values, lack of social and cultural capital, limited course availability, and inadequate financial resources act as potential barriers. To account for these contextual factors, this project shifts the focus from individual students to the communities to understand how key stakeholders and organizations support engineering as a major choice and addresses the following questions: RQ1. What do current undergraduate engineering students who graduated from rural high schools describe as influences on their choice to attend college and pursue engineering as a post-secondary major? RQ2. How does the college choice process differ for rural students who enrolled in a 4-year university immediately after graduating from high school and those who transferred from a 2-year institution? RQ3. How do community membersmore »describe the resources that serve as key supports as well as the barriers that hinder support in their community? RQ4. What strategies do community members perceive their community should implement to enhance their ability to support engineering as a potential career choice? RQ5. How are these supports transferable or adaptable by other schools? What community-level factors support or inhibit transfer and adaptation? To answer the research questions, we employed a three-phase qualitative study. Phase 1 focused on understanding the experiences and perceptions of current [University Name] students from higher-producing rural schools. Analysis of focus group and interview data with 52 students highlighted the importance of interest and support from influential adults in students’ decision to major in engineering. One key finding from this phase was the importance of community college for many of our participants. Transfer students who attended community college before enrolling at [University Name] discussed the financial influences on their decision and the benefits of higher education much more frequently than their peers. In Phase 2, we used the findings from Phase 1 to conduct interviews within the participants’ home communities. This phase helped triangulate students’ perceptions with the perceptions and practices of others, and, equally importantly, allowed us to understand the goals, attitudes, and experiences of school personnel and local community members as they work with students. Participants from the students’ home communities indicated that there were few opportunities for students to learn more about engineering careers and provided suggestions for how colleges and universities could be more involved with students from their community. Phase 3, scheduled for Spring 2020, will bring the findings from Phases 1 and 2 back to rural communities via two participatory design workshops. These workshops, designed to share our findings and foster collaborative dialogue among the participants, will enable us to explore factors that support or hinder transfer of findings and to identify policies and strategies that would enhance each community’s ability to support engineering as a potential career choice.« less