skip to main content


Title: Improved vergence and accommodation via Purkinje Image tracking with multiple cameras for AR glasses
We present a personalized, comprehensive eye-tracking solution based on tracking higher-order Purkinje images, suited explicitly for eyeglasses-style AR and VR displays. Existing eye-tracking systems for near-eye applications are typically designed to work for an on-axis configuration and rely on pupil center and corneal reflections (PCCR) to estimate gaze with an accuracy of only about 0.5°to 1°. These are often expensive, bulky in form factor, and fail to estimate monocular accommodation, which is crucial for focus adjustment within the AR glasses. Our system independently measures the binocular vergence and monocular accommodation using higher-order Purkinje reflections from the eye, extending the PCCR based methods. We demonstrate that these reflections are sensitive to both gaze rotation and lens accommodation and model the Purkinje images’ behavior in simulation. We also design and fabricate a user-customized eye tracker using cheap off-the-shelf cameras and LEDs. We use an end-to-end convolutional neural network (CNN) for calibrating the eye tracker for the individual user, allowing for robust and simultaneous estimation of vergence and accommodation. Experimental results show that our solution, specifically catering to individual users, outperforms state-of-the-art methods for vergence and depth estimation, achieving an accuracy of 0.3782°and 1.108 cm respectively.  more » « less
Award ID(s):
1840131
NSF-PAR ID:
10301046
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)
Page Range / eLocation ID:
320 to 331
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Eye tracking has become an essential human-machine interaction modality for providing immersive experience in numerous virtual and augmented reality (VR/AR) applications desiring high throughput (e.g., 240 FPS), small-form, and enhanced visual privacy. However, existing eye tracking systems are still limited by their: (1) large form-factor largely due to the adopted bulky lens-based cameras; (2) high communication cost required between the camera and backend processor; and (3) potentially concerned low visual privacy, thus prohibiting their more extensive applications. To this end, we propose, develop, and validate a lensless FlatCambased eye tracking algorithm and accelerator co-design framework dubbed EyeCoD to enable eye tracking systems with a much reduced form-factor and boosted system efficiency without sacrificing the tracking accuracy, paving the way for next-generation eye tracking solutions. On the system level, we advocate the use of lensless FlatCams instead of lens-based cameras to facilitate the small form-factor need in mobile eye tracking systems, which also leaves rooms for a dedicated sensing-processor co-design to reduce the required camera-processor communication latency. On the algorithm level, EyeCoD integrates a predict-then-focus pipeline that first predicts the region-of-interest (ROI) via segmentation and then only focuses on the ROI parts to estimate gaze directions, greatly reducing redundant computations and data movements. On the hardware level, we further develop a dedicated accelerator that (1) integrates a novel workload orchestration between the aforementioned segmentation and gaze estimation models, (2) leverages intra-channel reuse opportunities for depth-wise layers, (3) utilizes input feature-wise partition to save activation memory size, and (4) develops a sequential-write-parallel-read input buffer to alleviate the bandwidth requirement for the activation global buffer. On-silicon measurement and extensive experiments validate that our EyeCoD consistently reduces both the communication and computation costs, leading to an overall system speedup of 10.95×, 3.21×, and 12.85× over general computing platforms including CPUs and GPUs, and a prior-art eye tracking processor called CIS-GEP, respectively, while maintaining the tracking accuracy. Codes are available at https://github.com/RICE-EIC/EyeCoD. 
    more » « less
  2. Blascheck, Tanja ; Bradshaw, Jessica ; Vrzakova, Hana (Ed.)
    Virtual Reality (VR) technology has advanced to include eye-tracking, allowing novel research, such as investigating how our visual system coordinates eye movements with changes in perceptual depth. The purpose of this study was to examine whether eye tracking could track perceptual depth changes during a visual discrimination task. We derived two depth-dependent variables from eye tracker data: eye vergence angle (EVA) and interpupillary distance (IPD). As hypothesized, our results revealed that shifting gaze from near-to-far depth significantly decreased EVA and increased IPD, while the opposite pattern was observed while shifting from far-to-near. Importantly, the amount of change in these variables tracked closely with relative changes in perceptual depth, and supported the hypothesis that eye tracker data may be used to infer real-time changes in perceptual depth in VR. Our method could be used as a new tool to adaptively render information based on depth and improve the VR user experience. 
    more » « less
  3. Computer-graphics engineers and vision scientists want to generate images that reproduce realistic depth-dependent blur. Current rendering algorithms take into account scene geometry, aperture size, and focal distance, and they produce photorealistic imagery as with a high-quality camera. But to create immersive experiences, rendering algorithms should aim instead for perceptual realism. In so doing, they should take into account the significant optical aberrations of the human eye. We developed a method that, by incorporating some of those aberrations, yields displayed images that produce retinal images much closer to the ones that occur in natural viewing. In particular, we create displayed images taking the eye’s chromatic aberration into account. This produces different chromatic effects in the retinal image for objects farther or nearer than current focus. We call the method ChromaBlur. We conducted two experiments that illustrate the benefits of ChromaBlur. One showed that accommodation (eye focusing) is driven quite effectively when ChromaBlur is used and that accommodation is not driven at all when conventional methods are used. The second showed that perceived depth and realism are greater with imagery created by ChromaBlur than in imagery created conventionally. ChromaBlur can be coupled with focus-adjustable lenses and gaze tracking to reproduce the natural relationship between accommodation and blur in HMDs and other immersive devices. It may thereby minimize the adverse effects of vergence-accommodation conflicts. 
    more » « less
  4. Abstract Augmented reality (AR) devices, as smart glasses, enable users to see both the real world and virtual images simultaneously, contributing to an immersive experience in interactions and visualization. Recently, to reduce the size and weight of smart glasses, waveguides incorporating holographic optical elements in the form of advanced grating structures have been utilized to provide light-weight solutions instead of bulky helmet-type headsets. However current waveguide displays often have limited display resolution, efficiency and field-of-view, with complex multi-step fabrication processes of lower yield. In addition, current AR displays often have vergence-accommodation conflict in the augmented and virtual images, resulting in focusing-visual fatigue and eye strain. Here we report metasurface optical elements designed and experimentally implemented as a platform solution to overcome these limitations. Through careful dispersion control in the excited propagation and diffraction modes, we design and implement our high-resolution full-color prototype, via the combination of analytical–numerical simulations, nanofabrication and device measurements. With the metasurface control of the light propagation, our prototype device achieves a 1080-pixel resolution, a field-of-view more than 40°, an overall input–output efficiency more than 1%, and addresses the vergence-accommodation conflict through our focal-free implementation. Furthermore, our AR waveguide is achieved in a single metasurface-waveguide layer, aiding the scalability and process yield control. 
    more » « less
  5. Eye tracking has already made its way to current commercial wearable display devices, and is becoming increasingly important for virtual and augmented reality applications. However, the existing model-based eye tracking solutions are not capable of conducting very accurate gaze angle measurements, and may not be sufficient to solve challenging display problems such as pupil steering or eyebox expansion. In this paper, we argue that accurate detection and localization of pupil in 3D space is a necessary intermediate step in model-based eye tracking. Existing methods and datasets either ignore evaluating the accuracy of 3D pupil localization or evaluate it only on synthetic data. To this end, we capture the first 3D pupilgaze-measurement dataset using a high precision setup with head stabilization and release it as the first benchmark dataset to evaluate both 3D pupil localization and gaze tracking methods. Furthermore, we utilize an advanced eye model to replace the commonly used oversimplified eye model. Leveraging the eye model, we propose a novel 3D pupil localization method with a deep learning-based corneal refraction correction. We demonstrate that our method outperforms the state-of-the-art works by reducing the 3D pupil localization error by 47.5% and the gaze estimation error by 18.7%. Our dataset and codes can be found here: link. 
    more » « less