skip to main content


Title: Foliar fungi and plant diversity drive ecosystem carbon fluxes in experimental prairies
Abstract

Plant diversity and plant–consumer/pathogen interactions likely interact to influence ecosystem carbon fluxes but experimental evidence is scarce. We examined how experimental removal of foliar fungi, soil fungi and arthropods from experimental prairies planted with 1, 4 or 16 plant species affected instantaneous rates of carbon uptake (GPP), ecosystem respiration (Re) and net ecosystem exchange (NEE). Increasing plant diversity increased plant biomass, GPP and Re, but NEE remained unchanged. Removing foliar fungi increased GPP and NEE, with the greatest effects at low plant diversity. After accounting for plant biomass, we found that removing foliar fungi increased mass‐specific flux rates in the low‐diversity plant communities by altering plant species composition and community‐wide foliar nitrogen content. However, this effect disappeared when soil fungi and arthropods were also removed, demonstrating that both plant diversity and interactions among consumer groups determine the ecosystem‐scale effects of plant–fungal interactions.

 
more » « less
Award ID(s):
1831944
NSF-PAR ID:
10453891
Author(s) / Creator(s):
 ;  ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecology Letters
Volume:
24
Issue:
3
ISSN:
1461-023X
Page Range / eLocation ID:
p. 487-497
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A combination of theory and experiments predicts that increasing soil nutrients will modify herbivore and microbial impacts on ecosystem carbon cycling.

    However, few studies of herbivores and soil nutrients have measured both ecosystem carbon fluxes and carbon pools. Even more rare are studies manipulating microbes and nutrients that look at ecosystem carbon cycling responses.

    We added nutrients to a long‐term, experiment manipulating foliar fungi, soil fungi, mammalian herbivores and arthropods in a low fertility grassland. We measured gross primary production (GPP), ecosystem respiration (ER), net ecosystem exchange (NEE) and plant biomass throughout the growing season to determine how nutrients modify consumer impacts on ecosystem carbon cycling.

    Nutrient addition increased above‐ground biomass and GPP, but not ER, resulting in an increase in ecosystem carbon uptake rate. Reducing foliar fungi and arthropods increased plant biomass. Nutrients amplified consumer effects on plant biomass, such that arthropods and foliar fungi had a threefold larger impact on above‐ground biomass in fertilized plots.

    Synthesis. Our work demonstrates that throughout the growing season soil resources modify carbon uptake rates as well as animal and fungal impacts on plant biomass production. Taken together, ongoing nutrient pollution may increase ecosystem carbon uptake and drive fungi and herbivores to have larger impacts on plant biomass production.

     
    more » « less
  2. Abstract

    Plant biodiversity and consumers are important mediators of energy and carbon fluxes in grasslands, but their effects on within‐season variation of plant biomass production are poorly understood. Here we measure variation in control of plant biomass by consumers and plant diversity throughout the growing season and their impact on plant biomass phenology. To do this, we analysed 5 years of biweekly biomass measures (NDVI) in an experiment manipulating plant species richness and three consumer groups (foliar fungi, soil fungi and arthropods). Positive plant diversity effects on biomass were greatest early in the growing season, whereas the foliar fungicide and insecticide treatments increased biomass most late in the season. Additionally, diverse plots and plots containing foliar fungi reached maximum biomass almost a month earlier than monocultures and plots treated with foliar fungicide, demonstrating the dynamic and interactive roles that biodiversity and consumers play in regulating biomass production through the growing season.

     
    more » « less
  3. Abstract

    Theory predicts that consumers may stabilise or destabilise plant production depending on model assumptions, and tests in aquatic food webs suggest that trophic interactions are stabilising. We quantified the effects of trophic interactions on temporal variability (standard deviation) and temporal stability (mean/standard deviation) of grassland biomass production and the plant diversity–stability relationship by experimentally removing heterotrophs (large vertebrates, arthropods, foliar and soil fungi) from naturally and experimentally assembled grasslands of varying diversity. In both grassland types, trophic interactions proportionately decreased plant community biomass mean and variability over the course of 6 years, leading to no net change in temporal stability or the plant diversity–stability relationship. Heterotrophs also mediated plant coexistence; their removal reduced diversity in naturally assembled grasslands. Thus, herbivores and fungi reduce biomass production, concurrently reducing the temporal variability of energy and material fluxes. Because of this coupling, grassland stability is robust to large food web perturbations.

     
    more » « less
  4. Abstract

    Permafrost thaw causes the seasonally thawed active layer to deepen, causing the Arctic to shift toward carbon release as soil organic matter becomes susceptible to decomposition. Ground subsidence initiated by ice loss can cause these soils to collapse abruptly, rapidly shifting soil moisture as microtopography changes and also accelerating carbon and nutrient mobilization. The uncertainty of soil moisture trajectories during thaw makes it difficult to predict the role of abrupt thaw in suppressing or exacerbating carbon losses. In this study, we investigated the role of shifting soil moisture conditions on carbon dioxide fluxes during a 13‐year permafrost warming experiment that exhibited abrupt thaw. Warming deepened the active layer differentially across treatments, leading to variable rates of subsidence and formation of thermokarst depressions. In turn, differential subsidence caused a gradient of moisture conditions, with some plots becoming consistently inundated with water within thermokarst depressions and others exhibiting generally dry, but more variable soil moisture conditions outside of thermokarst depressions. Experimentally induced permafrost thaw initially drove increasing rates of growing season gross primary productivity (GPP), ecosystem respiration (Reco), and net ecosystem exchange (NEE) (higher carbon uptake), but the formation of thermokarst depressions began to reverse this trend with a high level of spatial heterogeneity. Plots that subsided at the slowest rate stayed relatively dry and supported higher CO2fluxes throughout the 13‐year experiment, while plots that subsided very rapidly into the center of a thermokarst feature became consistently wet and experienced a rapid decline in growing season GPP,Reco, and NEE (lower carbon uptake or carbon release). These findings indicate that Earth system models, which do not simulate subsidence and often predict drier active layer conditions, likely overestimate net growing season carbon uptake in abruptly thawing landscapes.

     
    more » « less
  5. The varied topography and large elevation gradients that characterize the arid and semi-arid Southwest create a wide range of climatic conditions - and associated biomes - within relatively short distances. This creates an ideal experimental system in which to study the effects of climate on ecosystems. Such studies are critical given that the Southwestern U.S. has already experienced changes in climate that have altered precipitation patterns (Mote et al. 2005), and stands to experience dramatic climate change in the coming decades (Seager et al. 2007; Ting et al. 2007). Climate models currently predict an imminent transition to a warmer, more arid climate in the Southwest (Seager et al. 2007; Ting et al. 2007). Thus, high elevation ecosystems, which currently experience relatively cool and mesic climates, will likely resemble their lower elevation counterparts, which experience a hotter and drier climate. In order to predict regional changes in carbon storage, hydrologic partitioning and water resources in response to these potential shifts, it is critical to understand how both temperature and soil moisture affect processes such as evaportranspiration (ET), total carbon uptake through gross primary production (GPP), ecosystem respiration (Reco), and net ecosystem exchange of carbon, water and energy across elevational gradients. We are using a sequence of six widespread biomes along an elevational gradient in New Mexico -- ranging from hot, arid ecosystems at low elevations to cool, mesic ecosystems at high elevation to test specific hypotheses related to how climatic controls over ecosystem processes change across this gradient. We have an eddy covariance tower and associated meteorological instruments in each biome which we are using to directly measure the exchange of carbon, water and energy between the ecosystem and the atmosphere. This gradient offers us a unique opportunity to test the interactive effects of temperature and soil moisture on ecosystem processes, as temperature decreases and soil moisture increases markedly along the gradient and varies through time within sites. This dataset examines how different stages of burn affects above-ground biomass production (ANPP) in a mixed desert-grassland. Net primary production is a fundamental ecological variable that quantifies rates of carbon consumption and fixation. Estimates of NPP are important in understanding energy flow at a community level as well as spatial and temporal responses to a range of ecological processes. Above-ground net primary production is the change in plant biomass, represented by stems, flowers, fruit and foliage, over time and incorporates growth as well as loss to death and decomposition. To measure this change the vegetation variables in this dataset, including species composition and the cover and height of individuals, are sampled twice yearly (spring and fall) at permanent 1m x 1m plots. The data from these plots is used to build regressions correlating biomass and volume via weights of select harvested species obtained in SEV157, "Net Primary Productivity (NPP) Weight Data." This biomass data is included in SEV292, "Flux Tower Seasonal Biomass and Seasonal and Annual NPP Data." 
    more » « less