skip to main content


Title: Residential yard management and landscape cover affect urban bird community diversity across the continental USA
Abstract

Urbanization has a homogenizing effect on biodiversity and leads to communities with fewer native species and lower conservation value. However, few studies have explored whether or how land management by urban residents can ameliorate the deleterious effects of this homogenization on species composition. We tested the effects of local (land management) and neighborhood‐scale (impervious surface and tree canopy cover) features on breeding bird diversity in six US metropolitan areas that differ in regional species pools and climate. We used a Bayesian multiregion community model to assess differences in species richness, functional guild richness, community turnover, population vulnerability, and public interest in each bird community in six land management types: two natural area park types (separate and adjacent to residential areas), two yard types with conservation features (wildlife‐certified and water conservation) and two lawn‐dominated yard types (high‐ and low‐fertilizer application), and surrounding neighborhood‐scale features. Species richness was higher in yards compared with parks; however, parks supported communities with high conservation scores while yards supported species of high public interest. Bird communities in all land management types were composed of primarily native species. Within yard types, species richness was strongly and positively associated with neighborhood‐scale tree canopy cover and negatively associated with impervious surface. At a continental scale, community turnover between cities was lowest in yards and highest in parks. Within cities, however, turnover was lowest in high‐fertilizer yards and highest in wildlife‐certified yards and parks. Our results demonstrate that, across regions, preserving natural areas, minimizing impervious surfaces and increasing tree canopy are essential strategies to conserve regionally important species. However, yards, especially those managed for wildlife support diverse, heterogeneous bird communities with high public interest and potential to support species of conservation concern. Management approaches that include the preservation of protected parks, encourage wildlife‐friendly yards and acknowledge how public interest in local birds can advance successful conservation in American residential landscapes.

 
more » « less
Award ID(s):
1855277 1638648 1638676 1836034 1832016
NSF-PAR ID:
10445753
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecological Applications
Volume:
31
Issue:
8
ISSN:
1051-0761
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Urbanization has a homogenizing effect on biodiversity and leads to communities with fewer native species and lower conservation value. However, few studies have explored whether or how land management by urban residents can ameliorate the deleterious effects of this homogenization on species composition. We tested the effects of local (land management) and neighborhood-scale (impervious surface and tree canopy cover) features on breeding bird diversity in six US metropolitan areas that differ in regional species pools and climate. We used a Bayesian multiregion community model to assess differences in species richness, functional guild richness, community turnover, population vulnerability, and public interest in each bird community in six land management types: two natural area park types (separate and adjacent to residential areas), two yard types with conservation features (wildlife-certified and water conservation) and two lawn-dominated yard types (high- and low-fertilizer application), and surrounding neighborhood-scale features. Species richness was higher in yards compared with parks; however, parks supported communities with high conservation scores while yards supported species of high public interest. Bird communities in all land management types were composed of primarily native species. Within yard types, species richness was strongly and positively associated with neighborhood-scale tree canopy cover and negatively associated with impervious surface. At a continental scale, community turnover between cities was lowest in yards and highest in parks. Within cities, however, turnover was lowest in high-fertilizer yards and highest in wildlife-certified yards and parks. Our results demonstrate that, across regions, preserving natural areas, minimizing impervious surfaces and increasing tree canopy are essential strategies to conserve regionally important species. However, yards, especially those managed for wildlife support diverse, heterogeneous bird communities with high public interest and potential to support species of conservation concern. Management approaches that include the preservation of protected parks, encourage wildlife-friendly yards and acknowledge how public interest in local birds can advance successful conservation in American residential landscapes. 
    more » « less
  2. Introduction Integrated social and ecological processes shape urban plant communities, but the temporal dynamics and potential for change in these managed communities have rarely been explored. In residential yards, which cover about 40% of urban land area, individuals make decisions that control vegetation outcomes. These decisions may lead to relatively static plant composition and structure, as residents seek to expend little effort to maintain stable landscapes. Alternatively, residents may actively modify plant communities to meet their preferences or address perceived problems, or they may passively allow them to change. In this research, we ask, how and to what extent does residential yard vegetation change over time? Methods We conducted co-located ecological surveys of yards (in 2008, 2018, and 2019) and social surveys of residents (in 2018) in four diverse neighborhoods of Phoenix, Arizona. Results 94% of residents had made some changes to their front or back yards since moving in. On average, about 60% of woody vegetation per yard changed between 2008 and 2018, though the number of species present did not differ significantly. In comparison, about 30% of woody vegetation changed in native Sonoran Desert reference areas over 10 years. In yards, about 15% of woody vegetation changed on average in a single year, with up to 90% change in some yards. Greater turnover was observed for homes that were sold, indicating a “pulse” of management. Additionally, we observed greater vegetation turnover in the two older, lawn-dominated neighborhoods surveyed despite differences in neighborhood socioeconomic factors. Discussion These results indicate that residential plant communities are dynamic over time. Neighborhood age and other characteristics may be important drivers of change, while socioeconomic status neither promotes nor inhibits change at the neighborhood scale. Our findings highlight an opportunity for management interventions, wherein residents may be open to making conservation-friendly changes if they are already altering the composition of their yards. 
    more » « less
  3. Abstract

    Despite interest in the contribution of evapotranspiration (ET) of residential turfgrass lawns to household and municipal water budgets across the United States, the spatial and temporal variability of residential lawn ET across large scales is highly uncertain. We measured instantaneous ET (ETinst) of lawns in 79 residential yards in six metropolitan areas: Baltimore, Boston, Miami, Minneapolis‐St. Paul (mesic climates), Los Angeles and Phoenix (arid climates). Each yard had one of four landscape types and management practices: traditional lawn‐dominated yards with high or low fertilizer input, yards with water‐conserving features, and yards with wildlife‐friendly features. We measured ETinstin situ during the growing season using portable chambers and identified environmental and anthropogenic factors controlling ET in residential lawns. For each household, we used ETinstto estimate daily ET of the lawn (ETdaily) and multiplied ETdailyby the lawn area to estimate the total volume of water lost through ET of the lawn (ETvol). ETdailyvaried from 0.9 ± 0.4 mm d1in mesic cities to 2.9 ± 0.7 mm d−1in arid cities. Neither ETinstnor ETdailywas significantly influenced by yard landscape types and ETinstpatterns indicated that lawns may be largely decoupled from regional rain‐driven climate patterns. ETvolranged from ∼0 L d−1to over 2,000 L d−1, proportionally increasing with lawn area. Current irrigation and lawn management practices did not necessarily result in different ETinstor ETdailyamong traditional, water‐conserving, or wildlife‐friendly yards, but smaller lawn areas in water‐conserving and wildlife‐friendly yards resulted in lower ETvol.

     
    more » « less
  4. Abstract Background The incidence of tick-borne disease has increased dramatically in recent decades, with urban areas increasingly recognized as high-risk environments for exposure to infected ticks. Green spaces may play a key role in facilitating the invasion of ticks, hosts and pathogens into residential areas, particularly where they connect residential yards with larger natural areas (e.g. parks). However, the factors mediating tick distribution across heterogeneous urban landscapes remain poorly characterized. Methods Using generalized linear models in a multimodel inference framework, we determined the residential yard- and local landscape-level features associated with the presence of three tick species of current and growing public health importance in residential yards across Staten Island, a borough of New York City, in the state of New York, USA. Results The amount and configuration of canopy cover immediately surrounding residential yards was found to strongly predict the presence of Ixodes scapularis and Amblyomma americanum , but not that of Haemaphysalis longicornis . Within yards, we found a protective effect of fencing against I. scapularis and A. americanum, but not against H. longicornis . For all species, the presence of log and brush piles strongly increased the odds of finding ticks in yards. Conclusions The results highlight a considerable risk of tick exposure in residential yards in Staten Island and identify both yard- and landscape-level features associated with their distribution. In particular, the significance of log and brush piles for all three species supports recommendations for yard management as a means of reducing contact with ticks. Graphical Abstract 
    more » « less
  5. Residential yards and gardens can have surprisingly high plant diversity. However, we still do not understand all the factors that drive diversity in individual gardens, or how gardens scale up to create larger patterns of urban biodiversity. For example, social interactions between neighbors could affect whether they mimic each other’s yard design, affecting spatial turnover in plant communities. Further, socio-economic differences between neighborhoods might result in distinct plant assemblages across a city. In this paper, we used fieldwork, GIS, and spatial statistics to examine the variability in front yard vegetation—both cultivated and spontaneous plants—in 870 yards in Chicago, Illinois (USA). Our goals were to understand diversity and spatial patterning of plant communities in residential neighborhoods and how they vary with scale, considering alpha, beta, and gamma diversity. We addressed the following questions: (1) How do alpha, beta, and gamma diversity of cultivated and spontaneous plants vary between neighborhoods with different socioeconomic characteristics? (2) Within neighborhoods, do we see spatial autocorrelation in front-yard plant communities? If so, do those spatial patterns affect plant diversity at the neighborhood scale? We found diverse plant communities and distinct spatial patterns across Chicago. Richness and composition of both spontaneous and cultivated plants differed between neighborhoods, with some differences explained by socioeconomic factors such as education. Spontaneous and cultivated plants showed significant spatial autocorrelation, although that spatial autocorrelation generally did not influence neighborhood-scale diversity. Knowledge of these spatial patterns and their socioeconomic drivers could be exploited to increase adoption of environmentally-friendly yard management practices across a city. 
    more » « less