The persistence of the global COVID-19 pandemic caused by the SARS-CoV-2 virus has continued to emphasize the need for point-of-care (POC) diagnostic tests for viral diagnosis. The most widely used tests, lateral flow assays used in rapid antigen tests, and reverse-transcriptase real-time polymerase chain reaction (RT-PCR), have been instrumental in mitigating the impact of new waves of the pandemic, but fail to provide both sensitive and rapid readout to patients. Here, we present a portable lens-free imaging system coupled with a particle agglutination assay as a novel biosensor for SARS-CoV-2. This sensor images and quantifies individual microbeads undergoing agglutination through a combination of computational imaging and deep learning as a way to detect levels of SARS-CoV-2 in a complex sample. SARS-CoV-2 pseudovirus in solution is incubated with acetyl cholinesterase 2 (ACE2)-functionalized microbeads then loaded into an inexpensive imaging chip. The sample is imaged in a portable in-line lens-free holographic microscope and an image is reconstructed from a pixel superresolved hologram. Images are analyzed by a deep-learning algorithm that distinguishes microbead agglutination from cell debris and viral particle aggregates, and agglutination is quantified based on the network output. We propose an assay procedure using two images which results in the accurate determination of viral concentrations greater than the limit of detection (LOD) of 1.27 × 10 3 copies per mL, with a tested dynamic range of 3 orders of magnitude, without yet reaching the upper limit. This biosensor can be used for fast SARS-CoV-2 diagnosis in low-resource POC settings and has the potential to mitigate the spread of future waves of the pandemic.
more »
« less
3D printed imaging platform for portable cell counting
Despite having widespread application in the biomedical sciences, flow cytometers have several limitations that prevent their application to point-of-care (POC) diagnostics in resource-limited environments. 3D printing provides a cost-effective approach to improve the accessibility of POC devices in resource-limited environments. Towards this goal, we introduce a 3D-printed imaging platform (3DPIP) capable of accurately counting particles and perform fluorescence microscopy. In our 3DPIP, captured microscopic images of particle flow are processed on a custom developed particle counter code to provide a particle count. This prototype uses a machine vision-based algorithm to identify particles from captured flow images and is flexible enough to allow for labeled and label-free particle counting. Additionally, the particle counter code returns particle coordinates with respect to time which can further be used to perform particle image velocimetry. These results can help estimate forces acting on particles, and identify and sort different types of cells/particles. We evaluated the performance of this prototype by counting 10 μm polystyrene particles diluted in deionized water at different concentrations and comparing the results with a commercial Beckman-Coulter Z2 particle counter. The 3DPIP can count particle concentrations down to ∼100 particles per mL with a standard deviation of ±20 particles, which is comparable to the results obtained on a commercial particle counter. Our platform produces accurate results at flow rates up to 9 mL h −1 for concentrations below 1000 particle per mL, while 5 mL h −1 produces accurate results above this concentration limit. Aside from performing flow-through experiments, our instrument is capable of performing static experiments that are comparable to a plate reader. In this configuration, our instrument is able to count between 10 and 250 cells per image, depending on the prepared concentration of bacteria samples ( Citrobacter freundii ; ATCC 8090). Overall, this platform represents a first step towards the development of an affordable fully 3D printable imaging flow cytometry instrument for use in resource-limited clinical environments.
more »
« less
- PAR ID:
- 10301163
- Date Published:
- Journal Name:
- The Analyst
- Volume:
- 146
- Issue:
- 12
- ISSN:
- 0003-2654
- Page Range / eLocation ID:
- 4033 to 4041
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Stratospheric Total Aerosol Counter (STAC) is a lightweight balloon‐borne instrument that utilizes condensational growth techniques to measure the total aerosol concentration. STAC is a miniaturized version of the legacy Wyoming condensation particle counter that operated from 1974 through 2020 in the middle latitudes and polar regions, with a few measurements in the tropics. Here we provide a description of the STAC instrument and the total aerosol measurement record, demonstrating that typical total aerosol profiles exhibit a peak in number mixing ratio, with values between 800 and 2,000 particles per mg of air (mg−1), just below the lapse rate tropopause (LRT). In the tropics and middle latitudes, mixing ratios decrease above the LRT likely due to coagulation and scavenging that results in a transfer of mass to the fewer but larger aerosol particles of the Junge layer. Exceptions to this occur in the spring time in the middle latitudes where a new particle layer between 20 and 25 km is frequently observed. In the poles, total aerosol profiles exhibit two distinct features: new particle formation in austral spring, and an increasing mixing ratio above 17 km likely due to the presence of meteoric smoke that has been concentrated within the polar vortex. High observed stratospheric particle mixing ratios, in excess of 2,000 mg−1, are observed in the polar new particle layer and at the top of polar profiles.more » « less
-
Suspension-feeding mollusks (e.g., bivalves) play a key role in improving the water quality of coastal environments by filtering out suspended matter from the water column. Microplastics are becoming ubiquitous in the marine environment, so it is important to understand if these particles affect feeding processes of bivalves. Additionally, previous studies regarding the impact of microplastic on bivalve physiology have not independently tested for the effects of surfactants which are often added to commercially available plastic particles to prevent aggregation. We measured the clearance rate of mussels (Mytilus edulis) exposed to one type of microplastic and three common surfactants. Mussels were given a dose of microalgal food (1 x 104 cells/mL) and 10-m polystyrene spheres (Polybead; 1 x 104 beads/mL). Experimental treatments tested were washed microspheres and microspheres coated with each of the following surfactants at a concentration of 2mg/L: triton X-100, benzalkonium chloride, and sodium dodecyl sulfate. These surfactants are nonionic, cationic, and anionic, respectively. Control mussels were given a microalgal diet only (2 x 104 cells/mL). Each mussel was placed in an individual 1-L chamber and exposed to one of the aforementioned treatments. Water samples were taken at the start of the experiment (t=0) and then every 10 minutes for 30 minutes to determine clearance rates. Particle concentrations were measured using an electronic particle counter (Coulter Counter) at an appropriate size range for the algae and microspheres. Our results indicate that microspheres with or without surfactant had no effect on clearance rates of mussel compared to those of the controls. Further, our research suggests that the use of polystyrene microspheres in future experiments without initial washing does not affect the clearance rate of mussels.more » « less
-
Suspension-feeding mollusks (e.g., bivalves) play a key role in improving the water quality of coastal environments by filtering out suspended matter from the water column. Microplastics are becoming ubiquitous in the marine environment, so it is important to understand if these particles affect feeding processes of bivalves. Additionally, previous studies regarding the impact of microplastic on bivalve physiology have not independently tested for the effects of surfactants which are often added to commercially available plastic particles to prevent aggregation. We measured the clearance rate of mussels (Mytilus edulis) exposed to one type of microplastic and three common surfactants. Mussels were given a dose of microalgal food (1 x 104 cells/mL) and 10-m polystyrene spheres (Polybead; 1 x 104 beads/mL). Experimental treatments tested were washed microspheres and microspheres coated with each of the following surfactants at a concentration of 2mg/L: triton X-100, benzalkonium chloride, and sodium dodecyl sulfate. These surfactants are nonionic, cationic, and anionic, respectively. Control mussels were given a microalgal diet only (2 x 104 cells/mL). Each mussel was placed in an individual 1-L chamber and exposed to one of the aforementioned treatments. Water samples were taken at the start of the experiment (t=0) and then every 10 minutes for 30 minutes to determine clearance rates. Particle concentrations were measured using an electronic particle counter (Coulter Counter) at an appropriate size range for the algae and microspheres. Our results indicate that microspheres with or without surfactant had no effect on clearance rates of mussel compared to those of the controls. Further, our research suggests that the use of polystyrene microspheres in future experiments without initial washing does not affect the clearance rate of mussels.more » « less
-
Abstract Quantifying bacterial cell numbers is crucial for experimental assessment and reproducibility, but the current technologies have limitations. The commonly used colony forming units (CFU) method causes a time delay in determining the actual numbers. Manual microscope counts are often error-prone for submicron bacteria. Automated systems are costly, require specialized knowledge, and are erroneous when counting smaller bacteria. In this study, we took a different approach by constructing three sequential generations (G1, G2, and G3) of counter-on-chip that accurately and timely count small particles and/or bacterial cells. We employed 2-photon polymerization (2PP) fabrication technology; and optimized the printing and molding process to produce high-quality, reproducible, accurate, and efficient counters. Our straightforward and refined methodology has shown itself to be highly effective in fabricating structures, allowing for the rapid construction of polydimethylsiloxane (PDMS)-based microfluidic devices. The G1 comprises three counting chambers with a depth of 20 µm, which showed accurate counting of 1 µm and 5 µm microbeads. G2 and G3 have eight counting chambers with depths of 20 µm and 5 µm, respectively, and can quickly and precisely countEscherichia colicells. These systems are reusable, accurate, and easy to use (compared to CFU/ml). The G3 device can give (1) accurate bacterial counts, (2) serve as a growth chamber for bacteria, and (3) allow for live/dead bacterial cell estimates using staining kits or growth assay activities (live imaging, cell tracking, and counting). We made these devices out of necessity; we know no device on the market that encompasses all these features.more » « less
An official website of the United States government

