skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Vis Ex Machina: An Analysis of Trust in Human versus Algorithmically Generated Visualization Recommendations
More visualization systems are simplifying the data analysis process by automatically suggesting relevant visualizations. However, little work has been done to understand if users trust these automated recommendations. In this paper, we present the results of a crowd-sourced study exploring preferences and perceived quality of recommendations that have been positioned as either human-curated or algorithmically generated. We observe that while participants initially prefer human recommenders, their actions suggest an indifference for recommendation source when evaluating visualization recommendations. The relevance of presented information (e.g., the presence of certain data fields) was the most critical factor, followed by a belief in the recommender’s ability to create accurate visualizations. Our findings suggest a general indifference towards the provenance of recommendations, and point to idiosyncratic definitions of visualization quality and trustworthiness that may not be captured by simple measures. We suggest that recommendation systems should be tailored to the information-foraging strategies of specific users.  more » « less
Award ID(s):
1850115
PAR ID:
10301349
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
CHI '21: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
Page Range / eLocation ID:
1 to 12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recently, there have been several proposals to develop visual recommendation systems. The most advanced systems aim to recommend visualizations, which help users to find new correlations or identify an interesting deviation based on the current context of the user's analysis. However, when recommending a visualization to a user, there is an inherent risk to visualize random fluctuations rather than solely true patterns: a problem largely ignored by current techniques. In this paper, we present VizCertify, a novel framework to improve the performance of visual recommendation systems by quantifying the statistical significance of recommended visualizations. The proposed methodology allows to control the probability of misleading visual recommendations using both classical statistical testing procedures and a novel application of the Vapnik Chervonenkis (VC) dimension towards visualization recommendation which results in an effective criterion to decide whether a recommendation corresponds to a true phenomenon or not. 
    more » « less
  2. Many of the everyday decisions a user makes rely on the suggestions of online recommendation systems. These systems amass implicit (e.g., location, purchase history, browsing history) and explicit (e.g., reviews, ratings) feedback from multiple users, produce a general consensus, and provide suggestions based on that consensus. However, due to privacy concerns, users are uncomfortable with implicit data collection, thus requiring recommendation systems to be overly dependent on explicit feedback. Unfortunately, users do not frequently provide explicit feedback. This hampers the ability of recommendation systems to provide high-quality suggestions. We introduce Heimdall, the first privacy-respecting implicit preference collection framework that enables recommendation systems to extract user preferences from their activities in a privacy respect- ing manner. The key insight is to enable recommendation systems to run a collector on a user’s device and precisely control the information a collector transmits to the recommendation system back- end. Heimdall introduces immutable blobs as a mechanism to guarantee this property. We implemented Heimdall on the Android plat- form and wrote three example collectors to enhance recommendation systems with implicit feedback. Our performance results suggest that the overhead of immutable blobs is minimal, and a user study of 166 participants indicates that privacy concerns are significantly less when collectors record only specific information—a property that Heimdall enables. 
    more » « less
  3. Methods for making high-quality recommendations often rely on learning latent representations from interaction data. These methods, while performant, do not provide ready mechanisms for users to control the recommendation they receive. Our work tackles this problem by proposing LACE, a novel concept value bottleneck model for controllable text recommendations. LACE represents each user with a succinct set of human-readable concepts through retrieval given user-interacted documents and learns personalized representations of the concepts based on user documents. This concept based user profile is then leveraged to make recommendations. The design of our model affords control over the recommendations through a number of intuitive interactions with a transparent user profile. We first establish the quality of recommendations obtained from LACE in an offline evaluation on three recommendation tasks spanning six datasets in warm-start, cold-start, and zero-shot setups. Next, we validate the controllability of LACE under simulated user interactions. Finally, we implement LACE in an interactive controllable recommender system and conduct a user study to demonstrate that users are able to improve the quality of recommendations they receive through interactions with an editable user profile. 
    more » « less
  4. Methods for making high-quality recommendations often rely on learning latent representations from interaction data. These methods, while performant, do not provide ready mechanisms for users to control the recommendation they receive. Our work tackles this problem by proposing LACE, a novel concept value bottleneck model for controllable text recommendations. LACE represents each user with a succinct set of human-readable concepts through retrieval given user-interacted documents and learns personalized representations of the concepts based on user documents. This concept based user profile is then leveraged to make recommendations. The design of our model affords control over the recommendations through a number of intuitive interactions with a transparent user profile. We first establish the quality of recommendations obtained from LACE in an offline evaluation on three recommendation tasks spanning six datasets in warm-start, cold-start, and zero-shot setups. Next, we validate the controllability of LACE under simulated user interactions. Finally, we implement LACE in an interactive controllable recommender system and conduct a user study to demonstrate that users are able to improve the quality of recommendations they receive through interactions with an editable user profile. 
    more » « less
  5. null (Ed.)
    Authors often transform a large screen visualization for smaller displays through rescaling, aggregation and other techniques when creating visualizations for both desktop and mobile devices (i.e., responsive visualization). However, transformations can alter relationships or patterns implied by the large screen view, requiring authors to reason carefully about what information to preserve while adjusting their design for the smaller display. We propose an automated approach to approximating the loss of support for task-oriented visualization insights (identification, comparison, and trend) in responsive transformation of a source visualization. We operationalize identification, comparison, and trend loss as objective functions calculated by comparing properties of the rendered source visualization to each realized target (small screen) visualization. To evaluate the utility of our approach, we train machine learning models on human ranked small screen alternative visualizations across a set of source visualizations. We find that our approach achieves an accuracy of 84% (random forest model) in ranking visualizations. We demonstrate this approach in a prototype responsive visualization recommender that enumerates responsive transformations using Answer Set Programming and evaluates the preservation of task-oriented insights using our loss measures. We discuss implications of our approach for the development of automated and semi-automated responsive visualization recommendation. 
    more » « less