skip to main content


Title: IMAGING OF FOCUSED ULTRASOUND-INDUCED SHEAR WAVES TO PROBE MECHANICAL ANISOTROPY OF TISSUE
It is important to understand mechanical anisotropy in fibrous soft tissues because of the relationship of anisotropy to tissue function, and because anisotropy may change due to injury and disease. We have developed a method to noninvasively investigate anisotropy, based on MR imaging of harmonic ultrasound-induced motion (MR-HUM), using focused ultrasound (FUS) and magnetic resonance elastography (MRE). MR-HUM produces symmetric, radial waves inside a tissue, which enables a simple assessment of anisotropy using features of the resulting shear wave fields. This method was applied to characterize ex vivo muscle tissue, which is known to exhibit mechanical anisotropy. Finite element (FE) simulations of the experiment were performed to illustrate and validate the approach. Anisotropy was characterized by ratios of apparent shear moduli and strain components in different directions.  more » « less
Award ID(s):
1727412
NSF-PAR ID:
10301383
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the 2021 Design of Medical Devices Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This paper describes a new method for estimating anisotropic mechanical properties of fibrous soft tissue by imaging shear waves induced by focused ultrasound (FUS) and analyzing their direction-dependent speeds. Fibrous materials with a single, dominant fiber direction may exhibit anisotropy in both shear and tensile moduli, reflecting differences in the response of the material when loads are applied in different directions. The speeds of shear waves in such materials depend on the propagation and polarization directions of the waves relative to the dominant fiber direction. In this study, shear waves were induced in muscle tissue (chicken breast) ex vivo by harmonically oscillating the amplitude of an ultrasound beam focused in a cylindrical tissue sample. The orientation of the fiber direction relative to the excitation direction was varied by rotating the sample. Magnetic resonance elastography (MRE) was used to visualize and measure the full 3D displacement field due to the ultrasound-induced shear waves. The phase gradient (PG) of radially propagating “slow” and “fast” shear waves provided local estimates of their respective wave speeds and directions. The equations for the speeds of these waves in an incompressible, transversely isotropic (TI), linear elastic material were fitted to measurements to estimate the shear and tensile moduli of the material. The combination of focused ultrasound and MR imaging allows noninvasive, but comprehensive, characterization of anisotropic soft tissue. 
    more » « less
  2. Accurate characterization of the mechanical properties of the human brain at both microscopic and macroscopic length scales is a critical requirement for modeling of traumatic brain injury and brain folding. To date, most experimental studies that employ classical tension/compression/shear tests report the mechanical properties of the brain averaged over both the gray and white matter within the macroscopic regions of interest. As a result, there is a missing correlation between the independent mechanical properties of the microscopic constituent elements and the composite bulk macroscopic mechanical properties of the tissue. This microstructural computational study aims to inversely predict the hyperelastic mechanical properties of the axonal fibers and their surrounding extracellular matrix (ECM) from the bulk tissue's mechanical properties. We develop a representative volume element (RVE) model of the bulk tissue consisting of axonal fibers and ECM with the embedded element technique. A multiobjective optimization technique is implemented to calibrate the model and establish the independent mechanical properties of axonal fibers and ECM based on seven previously reported experimental mechanical tests for bulk white matter tissue from the corpus callosum. The result of the study shows that the discrepancy between the reported values for the elastic behavior of white matter in literature stems from the anisotropy of the tissue at the microscale. The shear modulus of the axonal fiber is seven times larger than the ECM, with axonal fibers that also show greater nonlinearity, contrary to the common assumption that both components exhibit identical nonlinear characteristics. Statement of significance The reported mechanical properties of white matter microstructure used in traumatic brain injury or brain mechanics studies vary widely, in some cases by up to two orders of magnitude. Currently, the material parameters of the white matter microstructure are identified by a single loading mode or ultimately two modes of the bulk tissue. The presented material models only define the response of the bulk and homogenized white matter at a macroscopic scale and cannot explicitly capture the connection between the material properties of microstructure and bulk structure. To fill this knowledge gap, our study characterizes the hyperelastic material properties of axonal fibers and ECM using microscale computational modeling and multiobjective optimization. The hyperelastic material properties for axonal fibers and ECM presented in this study are more accurate than previously proposed because they have been optimized using seven or six loading modes of the bulk tissue, which were previously limited to only two of the seven possible loading modes. As such, the predicted values with high accuracy could be used in various computational modeling studies. The systematic characterization of the material properties of the human brain tissue at both macro- and microscales will lead to more accurate computational predictions, which will enable a better understanding of injury criteria, and has a positive impact on the improved development of smart protection systems, and more accurate prediction of brain development and disease progression. 
    more » « less
  3. Hydrogels have emerged as a crucial class of materials within the field of tissue engineering. There is growing interest in matching the mechanical properties of hydrogel scaffolds to tissues in the human body and optimizing these properties for cell growth and differentiation. Gelatin methacrylate (GelMA) is a well-accepted, biocompatible hydrogel with tunable mechanical properties. However, the effects of various formulation parameters on its mechanical properties are not well understood. In this study, an array of GelMA scaffold fabrication parameters is evaluated by varying GelMA concentration and ultraviolet light exposure time. Our overarching goal is to characterize the mechanical properties through ultrasound and rheological measurements, providing a framework for GelMA scaffold selection. Pulse-echo ultrasound techniques were used to non-invasively determine the sound speed and attenuation of the scaffolds, revealing significant dependence on GelMA concentration. Steady shear rate and strain- and frequency-controlled oscillatory shear tests using a rotational rheometer (Model: DHR-2, TA Instruments) revealed a range in the levels of shear-thinning as well as viscoelasticity and showed moduli-dependence on both GelMA concentration and light exposure time. Together, this acoustic and rheological characterization can be used to inform the selection of GelMA scaffolds in tissue engineering applications. 
    more » « less
  4. —Ultrasound is a continually developing technology that is broadly used for fast, non-destructive mechanical property detection of hard and soft materials in applications ranging from manufacturing to biomedical. In this study, a novel monostatic longitudinal ultrasonic pulsing elastography imaging method is introduced. Existing elastography methods require an acoustic radiational or dynamic compressive externally applied force to determine the effective bulk modulus or density. This new, passive M-mode imaging technique does not require an external stress, and can be effectively utilized for both soft and hard materials. Strain map imaging and shear wave elastography are two current categories of M-mode imaging that show both relative and absolute elasticity information. The new technique is applied to hard materials and soft material tissue phantoms for demonstrating effective bulk modulus and effective density mapping. As compared to standard techniques, the effective parameters fall within 10% of standard characterization methods for both hard and soft materials. As neither the standard A-mode imaging technique nor the presented technique require an external applied force, the techniques are applied to composite heterostructures and the findings presented for comparison. The presented passive M-mode technique is found to have enhanced resolution over standard A-mode modalities. 
    more » « less
  5. Abstract

    Objective. With the ultimate goal of reconstructing 3D elasticity maps from ultrasound particle velocity measurements in a plane, we present in this paper a methodology of inverting for 2D elasticity maps from measurements on a single line.Approach. The inversion approach is based on gradient optimization where the elasticity map is iteratively modified until a good match is obtained between simulated and measured responses. Full-wave simulation is used as the underlying forward model to accurately capture the physics of shear wave propagation and scattering in heterogeneous soft tissue. A key aspect of the proposed inversion approach is a cost functional based on correlation between measured and simulated responses.Main results. We illustrate that the correlation-based functional has better convexity and convergence properties compared to the traditional least-squares functional, and is less sensitive to initial guess, robust against noisy measurements and other errors that are common in ultrasound elastography. Inversion with synthetic data illustrates the effectiveness of the method to characterize homogeneous inclusions as well as elasticity map of the entire region of interest.Significance. The proposed ideas lead to a new framework for shear wave elastography that shows promise in obtaining accurate maps of shear modulus using shear wave elastography data obtained from standard clinical scanners.

     
    more » « less