Post-disaster field observations of the built environment are critical for advancing fundamental research that links hazard data to structural performance, cascading community impacts, and the development of effective mitigation strategies. Yet, data collection remain fragmented across hazard types and infrastructure systems due to varying objectives, methodologies, protocols, and standards among investigators and organizations. To address this, a Unified Assessment Framework has been developed for standardized post-disaster hazard and structural assessment data and metadata collection across multiple natural hazards (earthquake, windstorm, coastal events) and infrastructure typologies. The framework encompasses a tiered performance assessment structure with increasing rigor and fidelity levels: Basic Assessment (BA), Load Path Assessment (LPA), and Detailed Component Assessment (DCA). The framework has been implemented as an open-access mobile application, the Structural Extreme Events Reconnaissance (StEER) Network’s StEER Unified App, hosted on Fulcrum data collection platform . Along with unification of data fields, preliminary mapping rules were developed to map out existing hazard-specific damage rating scales (e.g., wind, surge/flooding, rainwater ingress) to the European Macroseismic Scale (EMS-98) compatible unified damage scale, enabling consolidation of global damage ratings into a common data field, facilitating the unification of multiple hazards within a single app. In the mapping of damage ratings, overarching level definitions were retained (e.g., slight, moderate, severe damage) while customizing the specific descriptors to reflect hazard-specific damage mechanisms. Two use cases are presented to demonstrate the application of this framework through the StEER Unified App: a supervised pilot after the 2022 Hurricane Ian, Florida and an unsupervised deployment for the 2023 Turkey earthquake sequence. These deployments illustrate the framework’s flexibility and scalability, validate the feasibility of standardized assessments, and offer insights into how data quality is influenced by assessor pre-deployment training and assessment tier—particularly for complex tasks such as load path evaluation. This work advances the field by providing a scalable, standardized, and hazard-agnostic approach to structural field reconnaissance. The open-access framework and app support real-time deployments and enable integration of legacy datasets into a unified platform—laying the foundation for longitudinal analyses, cross-hazard comparisons, and expanded data reuse in the Natural Hazards Engineering community.
more »
« less
StEER: A Community-Centered Approach to Assessing the Performance of the Built Environment After Natural Hazard Events
Since its founding in 2018, the Structural Extreme Events Reconnaissance (StEER) Network has worked to deepen the capacity of the Natural Hazards Engineering (NHE) community for coordinated and standardized assessments of the performance of the built environment following natural hazard events. This paper positions StEER within the field of engineering reconnaissance and the Natural Hazards Engineering Research Infrastructure (NHERI), outlining its organizational model for coordinated community-led responses to wind, seismic, and coastal hazard events. The paper’s examination of StEER’s event response workflow, engaging a range of hardware and delivering a suite of products, demonstrates StEER’s contributions in the areas of: workflow and data standardization, data reliability to enable field-observation-driven research & development, efficiency in data collection and dissemination to speed knowledge sharing, near-real- time open data access for enhanced coordination and transparency, and flexibility in collaboration modes to reduce the “overhead” associated with reconnaissance and foster broad NHE community engagement in event responses as part of field and virtual assessment structural teams (FAST/VAST). StEER’s creation of efficient systems to deliver well-documented, reliable data suitable for diverse re-uses as well as rapidly disseminated synopses of the impact of natural hazard events on the built environment provide a distinctive complement to existing post-event reconnaissance initiatives. The implementation of these policies, protocols and workflows is then demonstrated with case studies from five events illustrating StEER’s different field response strategies: the Nashville, Tennessee Tornadoes (2020) – a Hazard Gradient Survey; the Palu Earthquake and Tsunami in Indonesia (2018) – a Representative Performance Study; the Puerto Rico Earthquakes (2019/2020) – using Targeted Case Studies; Hurricane Laura (2020) – leveraging Rapid Surveys to enable virtual assessments; and Hurricane Dorian (2019) in the Bahamas – a Phased Multi-Hazard Investigation. The use of these strategies has enabled StEER to respond to 36 natural hazard events, involving over 150 different individuals to produce 45 published reports/briefings, over 5000 publicly available app-based structural assessments, and over 1600 km (1000 mi) of street-level panoramic imagery in its first 2years of operation.
more »
« less
- Award ID(s):
- 1841667
- PAR ID:
- 10301401
- Date Published:
- Journal Name:
- Frontiers in built environment
- Volume:
- 7
- ISSN:
- 2297-3362
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)On September 1 2019, Hurricane Dorian made landfall in Elbow Cay in the Bahamas with sustained winds of 295 km/h and a central pressure of 910 mb, with subsequent landfalls in Marsh Harbour and Grand Bahama Island, where it stalled for two days. This paper presents field observations of Dorian’s coastal hazards and impacts on the built environment in these locales, collected by the Structural Extreme Events Reconnaissance (StEER) Network. Data were collected using a mixed methodological approach: (1) surveying high-water marks and inundation extent, including an approximately 8 m high water mark in Marsh Harbour, (2) conducting surface-level forensic assessments of damage to 358 structures, and (3) rapidly imaging 475 km of routes using street-level panoramas. Field observations are complemented by a debris field analysis using high-resolution satellite imagery. Observed performance reiterates the potential for well-confined, elevated construction to perform well under major hurricanes, but with the need to codify such practices through the addition of storm surge design provisions and an increase in the design wind speeds in the Bahamas Building Code. This study further demonstrates the value of robust reconnaissance infrastructure for capturing perishable data following hurricanes and making such data rapidly available using publicly accessible platforms.more » « less
-
On 14th August 2021, a magnitude 7.2 earthquake struck the Tiburon Peninsula in the Caribbean nation of Haiti, approximately 150 km west of the capital Port-au-Prince. Aftershocks up to moment magnitude 5.7 followed and over 1,000 landslides were triggered. These events led to over 2,000 fatalities, 15,000 injuries and more than 137,000 structural failures. The economic impact is of the order of US$1.6 billion. The on-going Covid pandemic and a complex political and security situation in Haiti meant that deploying earthquake engineers from the UK to assess structural damage and identify lessons for future building construction was impractical. Instead, the Earthquake Engineering Field Investigation Team (EEFIT) carried out a hybrid mission, modelled on the previous EEFIT Aegean Mission of 2020. The objectives were: to use open-source information, particularly remote sensing data such as InSAR and Optical/Multispectral imagery, to characterise the earthquake and associated hazards; to understand the observed strong ground motions and compare these to existing seismic codes; to undertake remote structural damage assessments, and to evaluate the applicability of the techniques used for future post-disaster assessments. Remote structural damage assessments were conducted in collaboration with the Structural Extreme Events Reconnaissance (StEER) team, who mobilised a group of local non-experts to rapidly record building damage. The EEFIT team undertook damage assessment for over 2,000 buildings comprising schools, hospitals, churches and housing to investigate the impact of the earthquake on building typologies in Haiti. This paper summarises the mission setup and findings, and discusses the benefits, and difficulties, encountered during this hybrid reconnaissance mission.more » « less
-
Natural hazards, including hurricanes and earthquakes, can escalate into catastrophic societal events due to the destruction of the built environment. To minimize the impact of such hazards on vulnerable communities, civil infrastructure must be designed with performance criteria that prioritize public safety and ensure continuous operation. The National Science Foundation funded Natural Hazards Engineering Research Infrastructure (NHERI) program focuses on advancing the development of resilient infrastructure. The NHERI Lehigh Real-time Multi-directional Simulation Experimental Facility (EF) is one of the facilities within this program. The facility serves as an open-access research hub, offering advanced technologies and engineering tools to develop innovative solutions for natural hazard mitigation. It is uniquely equipped to perform large-scale, multi-directional structural testing in real-time using a cyber-physical simulation technique known as real-time hybrid simulation. This technique enables researchers to model entire systems subjected to dynamic loads at a full scale, allowing for realistic assessments of infrastructure responses to specific hazard scenarios and the development of effective mitigation strategies. This paper explores how cyber-physical simulation has revolutionized research in natural hazards engineering and its influence on engineering practices. It highlights several ongoing projects at the NHERI Lehigh EF aimed at enhancing community resilience in hazard-prone regions. The paper also discusses the planned expansion of the EF, which aims to broaden its focus to include a wider range of natural hazards, and infrastructure systems. This expansion will incorporate both physical and computational resources to enhance the understanding of fluid interactions in combined natural hazards and climate change impacts on coastal and offshore infrastructure. The NHERI Lehigh EF represents a transformative facility that is reshaping natural hazards research and will continue to play a pivotal role in the development of risk management strategies for more resilient communities.more » « less
-
The 2020 Social Science Extreme Events Research (SSEER) Census summarizes the results of responses gathered from 1,230 social scientists who filled out the SSEER survey between its release date on July 8, 2018 and December 31, 2020. This report characterizes the diversity and disciplinary skills and expertise among the research community. It is organized into the following categories: (1) number of researchers; (2) researcher geographic location; (3) disciplinary background and expertise; (4) educational and professional background; (5) level of involvement in hazards and disaster research (core, periodic, situational, emerging); (6) research methods and approaches; (7) disaster types, phases, and specific extreme events studied; and (8) researcher demographic characteristics. The document concludes with further readings, data citations, and a brief description of the SSEER network. This annual report responds to longstanding calls to better characterize the composition of the hazards and disaster workforce. The 2018, 2019, and 2020 SSEER Census reports are available for download as color and black & white PDF files at: https://converge.colorado.edu/research-networks/sseer/sseer-census. Social scientists who study hazards and disasters can become a part of this network and annual count by joining SSEER at: https://converge.colorado.edu/research-networks/sseer. More information on SSEER and the other National Science Foundation-funded reconnaissance and research networks is available on the CONVERGE website at: https://converge.colorado.edu/research-networks.This project includes a survey instrument, data, and annual census reports from the National Science Foundation (NSF)-funded Social Science Extreme Events Research (SSEER) network, which is headquartered at the Natural Hazards Engineering Research Infrastructure (NHERI) CONVERGE facility at the Natural Hazards Center at the University of Colorado Boulder. The SSEER network, which was launched in 2018, was formed, in part, to respond to the need for more specific information about the status and expertise of the social science hazards and disaster research workforce. The mission of SSEER is to identify and map social scientists involved in hazards and disaster research in order to highlight their expertise and connect social science researchers to one another, to interdisciplinary teams, and to communities at risk to hazards and affected by disasters. Ultimately, the goals of SSEER are to amplify the contributions of social scientists and to advance the field through expanding the available social science evidence base. To see the SSEER map and to learn more about the SSEER initiative, please visit: https://converge.colorado.edu/research-networks/sseer. All social and behavioral scientists and those in allied disciplines who study the human, economic, policy, and health dimensions of disasters are invited to join this network via a short online survey. This DesignSafe project includes: (1) the SSEER survey instrument; (2) de-identified data, which is updated annually as new researchers join the SSEER network and returning members update their information; and (3) SSEER annual census reports. These resources are available to all who are interested in learning more about the composition of the social science hazards and disaster workforce. SSEER is part of a larger ecosystem of NSF-funded extreme events research and reconnaissance networks designed to help coordinate disciplinary communities in engineering and the sciences, while also encouraging cross-disciplinary information sharing and interdisciplinary integration. To learn more about the networks and research ecosystem, please visit: https://converge.colorado.edu/research-networks/.more » « less
An official website of the United States government

