This paper designs a novel geometry-conformal antenna for Magnetic Induction (MI)-based subsea wireless communications for autonomous underwater vehicles (AUV). The designed tri-directional antennas can be wrapped directly on the surface of AUVs, such that the AUVs fluid dynamics are well maintained to ensure power efficiency of the vehicles. In addition, ferrite materials are added between the MI antenna and the metallic body surface of the AUVs to overcome the shielding effect and enhance the MI signal strength. The designed MI communication system is implemented in hardware and the effectiveness of the geometry-conformal MI antenna is demonstrated through COMSOL simulations and lab experiments.
more »
« less
Metallic Hydrogen
For over eighty years, scientists have been trying to produce lab-made metallic hydrogen, the holy grail of alternative fuels. In that process, diamond anvils must withstand pressures greater than those at the center of the earth—no mean feat. Recent research may have finally achieved hydrogen’s metallic state. All that remains is for another lab to reproduce the results.
more »
« less
- Award ID(s):
- 1905943
- PAR ID:
- 10301413
- Date Published:
- Journal Name:
- Inference: International Review of Science
- Volume:
- 6
- Issue:
- 2
- ISSN:
- 2576-4403
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Amid corrosion degradation of metallic structures causing expenses nearing 3 trillion or 4% of the GDP annually along with major safety risks, the adoption of AI technologies for accelerating the materials science life-cycle for developing materials with better corrosive properties is paramount. While initial machine learning models for corrosion assessment are being proposed in the literature, their incorporation into end-to-end tools for field experimentation by corrosion scientists remains largely unexplored. To fill this void, our university data science team in collaboration with the materials science unit at the Army Research Lab have jointly developed MOSS, an innovative AI-based digital platform to support material science corrosion research. MOSS features user-friendly iPadOS app for in-field corrosion progression data collection, deep-learning corrosion assessor, robust data repository system for long-term experimental data modeling, and visual analytics web portal for material science research. In this demonstration, we showcase the key innovations of the MOSS platform via use cases supporting the corrosion exploration processes, with the promise of accelerating the discovery of new materials. We open a MOSS video demo at: https://www.youtube.com/watch?v=CzcxMMRsxkEmore » « less
-
Markel, Scott (Ed.)When running a lab we do not think about calamities, since they are rare events for which we cannot plan while we are busy with the day-to-day management and intellectual challenges of a research lab. No lab team can be prepared for something like a pandemic such as COVID-19, which has led to shuttered labs around the globe. But many other types of crises can also arise that labs may have to weather during their lifetime. What can researchers do to make a lab more resilient in the face of such exterior forces? What systems or behaviors could we adjust in ‘normal’ times that promote lab success, and increase the chances that the lab will stay on its trajectory? We offer 10 rules, based on our current experiences as a lab group adapting to crisis.more » « less
-
The Microbiology and Cell Science program at the University of Florida compressed two standard 16-week lab courses into five-day versions of the course, which are referred to as bootcamp labs. The bootcamp labs have the same objectives, activities, and assessments as their traditional counterparts. Development of the bootcamp labs was part of a larger effort to increase access to the major, and more broadly STEM, by offering a 2+2 hybrid online transfer program. The results of this mixed-methods study include a direct comparison between bootcamp and traditional lab format as an approach for delivery of a face-to-face lab course. The bootcamp lab cohort has a greater diversity of students, with more women and underrepresented minorities in STEM than the traditional semester-long cohorts. Students in the bootcamp labs have comparable grade outcomes and learning gains to students in traditional lab format. Regression analysis identified GPA, but not lab format, as the most significant predictor of success for students enrolled in lab courses. Qualitative results suggest that the bootcamp format may be a better way than traditional formats to teach microbiology lab. In summary, the results demonstrate that a bootcamp version of a face-to-face microbiology course is just as effective as the traditional semester-long version. This work has broader implications as it supports the bootcamp lab approach as a model in STEM education for increasing access and for overcoming a major barrier to online STEM programs: face-to-face delivery of key lab courses.more » « less
-
Biomanufacturing metal/metallic nanomaterials with ordered micro/nanostructures and controllable functions is of great importance in both fundamental studies and practical applications due to their low toxicity, lower pollution production, and energy conservation. Microorganisms, as efficient biofactories, have a significant ability to biomineralize and bioreduce metal ions that can be obtained as nanocrystals of varying morphologies and sizes. The development of nanoparticle biosynthesis maximizes the safety and sustainability of the nanoparticle preparation. Significant efforts and progress have been made to develop new green and environmentally friendly methods for biocompatible metal/metallic nanomaterials. In this review, we mainly focus on the microbial biomanufacture of different metal/metallic nanomaterials due to their unique advantages of wide availability, environmental acceptability, low cost, and circular sustainability. Specifically, we summarize recent and important advances in the synthesis strategies and mechanisms for different types of metal/metallic nanomaterials using different microorganisms. Finally, we highlight the current challenges and future research directions in this growing multidisciplinary field of biomaterials science, nanoscience, and nanobiotechnology.more » « less
An official website of the United States government

