skip to main content


Title: How Artificial Intelligence and Deep Learning are Changing the Healthcare Industry
This research paper will discuss the various technological innovations that have been developed within the past, are being developed in the present and will be developed in the future to bring progressive change within the healthcare industry. In particular, the way artificial intelligence and deep learning has brought about new methods for making task more efficient, less time consuming, and possibly more accurate. This study will discuss the different positive and negative effects of these technological methods to best see how artificial intelligence (AI) and deep learning is impacting the health industry in all areas. With supportive interviews from medical professionals, data scientist, and machine learning researchers, the analysis of real-world experiences and scenarios will provide more insight to what is beneficial or ineffective. The study utilizes extensive literary works to examine in detail the current AI and deep learning new approach to medicine, the risk and ethical concerns, the technological challenges from determining the best algorithms, and myths versus reality surrounded by this subject.  more » « less
Award ID(s):
1458729
PAR ID:
10301438
Author(s) / Creator(s):
Date Published:
Journal Name:
The ADMI 2021 Symposium
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Artificial intelligence (AI) has immense potential spanning research and industry. AI applications abound and are expanding rapidly, yet the methods, performance, and understanding of AI are in their infancy. Researchers face vexing issues such as how to improve performance, transferability, reliability, comprehensibility, and how better to train AI models with only limited data. Future progress depends on advances in hardware accelerators, software frameworks, system and architectures, and creating cross-cutting expertise between scientific and AI domains. Open Compass is an exploratory research project to conduct academic pilot studies on an advanced engineering testbed for artificial intelligence, the Compass Lab, culminating in the development and publication of best practices for the benefit of the broad scientific community. Open Compass includes the development of an ontology to describe the complex range of existing and emerging AI hardware technologies and the identification of benchmark problems that represent different challenges in training deep learning models. These benchmarks are then used to execute experiments in alternative advanced hardware solution architectures. Here we present the methodology of Open Compass and some preliminary results on analyzing the effects of different GPU types, memory, and topologies for popular deep learning models applicable to image processing. 
    more » « less
  2. The field of artificial consciousness (AC) has largely developed outside of mainstream artificial intelligence (AI), with separate goals and criteria for success and with only a minimal exchange of ideas. This is unfortunate as the two fields appear to be synergistic. For example, here we consider the question of how concepts developed in AC research might contribute to more effective future AI systems. We first briefly discuss several past hypotheses about the function(s) of human consciousness, and present our own hypothesis that short-term working memory and very rapid learning should be a central concern in such matters. In this context, we then present ideas about how integrating concepts from AC into AI systems to develop an artificial conscious intelligence (ACI) could both produce more effective AI technology and contribute to a deeper scientific understanding of the fundamental nature of consciousness and intelligence. 
    more » « less
  3. This report will discuss implementing artificial intelligence in healthcare. Artificial Intelligence would be beneficial to healthcare because of the endless opportunities it provides. AI can be used to help detect and cure diseases, help patients with a path to treatment and even assist doctors with surgeries. Within this paper I will talk to you about the benefits of AI in healthcare and how it can be implemented using cyber security. In addition, I will conduct interviews with doctors and nurses to hear their perspective on AI in hospitals and how it is needed as well. As well as create a survey for nursing students at my university to see what their viewpoints are on adding AI unto the field of medicine. The best method to incorporate both user input and research into this paper is to use user input to back up the research. User input will be great addition because it gives the readers a real-world opinion on if this topic is valid. 
    more » « less
  4. Abstract

    Predicting protein function from protein sequence, structure, interaction, and other relevant information is important for generating hypotheses for biological experiments and studying biological systems, and therefore has been a major challenge in protein bioinformatics. Numerous computational methods had been developed to advance protein function prediction gradually in the last two decades. Particularly, in the recent years, leveraging the revolutionary advances in artificial intelligence (AI), more and more deep learning methods have been developed to improve protein function prediction at a faster pace. Here, we provide an in‐depth review of the recent developments of deep learning methods for protein function prediction. We summarize the significant advances in the field, identify several remaining major challenges to be tackled, and suggest some potential directions to explore. The data sources and evaluation metrics widely used in protein function prediction are also discussed to assist the machine learning, AI, and bioinformatics communities to develop more cutting‐edge methods to advance protein function prediction.

     
    more » « less
  5. Advancements in computing and data from the near universal acceptance and implementation of electronic health records has been formative for the growth of personalized, automated, and immediate patient care models that were not previously possible. Artificial intelligence (AI) and its subfields of machine learning, reinforcement learning, and deep learning are well-suited to deal with such data. The authors in this paper review current applications of AI in clinical medicine and discuss the most likely future contributions that AI will provide to the healthcare industry. For instance, in response to the need to risk stratify patients, appropriately cultivated and curated data can assist decision-makers in stratifying preoperative patients into risk categories, as well as categorizing the severity of ailments and health for non-operative patients admitted to hospitals. Previous overt, traditional vital signs and laboratory values that are used to signal alarms for an acutely decompensating patient may be replaced by continuously monitoring and updating AI tools that can pick up early imperceptible patterns predicting subtle health deterioration. Furthermore, AI may help overcome challenges with multiple outcome optimization limitations or sequential decision-making protocols that limit individualized patient care. Despite these tremendously helpful advancements, the data sets that AI models train on and develop have the potential for misapplication and thereby create concerns for application bias. Subsequently, the mechanisms governing this disruptive innovation must be understood by clinical decision-makers to prevent unnecessary harm. This need will force physicians to change their educational infrastructure to facilitate understanding AI platforms, modeling, and limitations to best acclimate practice in the age of AI. By performing a thorough narrative review, this paper examines these specific AI applications, limitations, and requisites while reviewing a few examples of major data sets that are being cultivated and curated in the US. 
    more » « less