skip to main content


Title: Replication timing analysis in polyploid cells reveals Rif1 uses multiple mechanisms to promote underreplication in Drosophila
Abstract Regulation of DNA replication and copy number is necessary to promote genome stability and maintain cell and tissue function. DNA replication is regulated temporally in a process known as replication timing (RT). Rap1-interacting factor 1 (Rif1) is a key regulator of RT and has a critical function in copy number control in polyploid cells. Previously, we demonstrated that Rif1 functions with SUUR to inhibit replication fork progression and promote underreplication (UR) of specific genomic regions. How Rif1-dependent control of RT factors into its ability to promote UR is unknown. By applying a computational approach to measure RT in Drosophila polyploid cells, we show that SUUR and Rif1 have differential roles in controlling UR and RT. Our findings reveal that Rif1 acts to promote late replication, which is necessary for SUUR-dependent underreplication. Our work provides new insight into the process of UR and its links to RT.  more » « less
Award ID(s):
1818019
NSF-PAR ID:
10301533
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Bateman, J
Date Published:
Journal Name:
Genetics
Volume:
219
Issue:
3
ISSN:
1943-2631
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Replication initiation in eukaryotic cells occurs asynchronously throughout S phase, yielding early- and late-replicating regions of the genome, a process known as replication timing (RT). RT changes during development to ensure accurate genome duplication and maintain genome stability. To understand the relative contributions that cell lineage, cell cycle, and replication initiation regulators have on RT, we utilized the powerful developmental systems available in Drosophila melanogaster. We generated and compared RT profiles from mitotic cells of different tissues and from mitotic and endocycling cells of the same tissue. Our results demonstrate that cell lineage has the largest effect on RT, whereas switching from a mitotic to an endoreplicative cell cycle has little to no effect on RT. Additionally, we demonstrate that the RT differences we observed in all cases are largely independent of transcriptional differences. We also employed a genetic approach in these same cell types to understand the relative contribution the eukaryotic RT control factor, Rif1, has on RT control. Our results demonstrate that Rif1 can function in a tissue-specific manner to control RT. Importantly, the Protein Phosphatase 1 (PP1) binding motif of Rif1 is essential for Rif1 to regulate RT. Together, our data support a model in which the RT program is primarily driven by cell lineage and is further refined by Rif1/PP1 to ultimately generate tissue-specific RT programs. 
    more » « less
  2. Successful duplication of the genome requires the accurate replication of billions of base pairs of DNA within a relatively short time frame. Failure to accurately replicate the genome results in genomic instability and a host of diseases. To faithfully and rapidly replicate the genome, DNA replication must be tightly regulated and coordinated with many other nuclear processes. These regulations, however, must also be flexible as replication kinetics can change through development and differentiation. Exactly how DNA replication is regulated and how this regulation changes through development is an active field of research. One aspect of genome duplication where much remains to be discovered is replication timing (RT), which dictates when each segment of the genome is replicated during S phase. All organisms display some level of RT, yet the precise mechanisms that govern RT remain are not fully understood. The study of Rif1, a protein that actively regulates RT from yeast to humans, provides a key to unlock the underlying molecular mechanisms controlling RT. The paradigm for Rif1 function is to delay helicase activation within certain regions of the genome, causing these regions to replicate late in S phase. Many questions, however, remain about the intricacies of Rif1 function. Here, we review the current models for the activity of Rif1 with the goal of trying to understand how Rif1 functions to establish the RT program.

     
    more » « less
  3. Abstract

    Telomeres protect chromosome ends and are distinguished from DNA double-strand breaks (DSBs) by means of a specialized chromatin composed of DNA repeats bound by a multiprotein complex called shelterin. We investigated the role of telomere-associated proteins in establishing end-protection by studying viable mutants lacking these proteins. Mutants were studied using a Schizosaccharomyces pombe model system that induces cutting of a ‘proto-telomere’ bearing telomere repeats to rapidly form a new stable chromosomal end, in contrast to the rapid degradation of a control DSB. Cells lacking the telomere-associated proteins Taz1, Rap1, Poz1 or Rif1 formed a chromosome end that was stable. Surprisingly, cells lacking Ccq1, or impaired for recruiting Ccq1 to the telomere, converted the cleaved proto-telomere to a rapidly degraded DSB. Ccq1 recruits telomerase, establishes heterochromatin and affects DNA damage checkpoint activation; however, these functions were separable from protection of the new telomere by Ccq1. In cells lacking Ccq1, telomere degradation was greatly reduced by eliminating the nuclease activity of Mre11 (part of the Mre11–Rad50–Nbs1/Xrs2 DSB processing complex), and higher amounts of nuclease-deficient Mre11 associated with the new telomere. These results demonstrate a novel function for S. pombe Ccq1 to effect end-protection by restraining Mre11-dependent degradation of the DNA end.

     
    more » « less
  4. Robinson, Peter (Ed.)
    Abstract Motivation Genomic DNA replicates according to a reproducible spatiotemporal program, with some loci replicating early in S phase while others replicate late. Despite being a central cellular process, DNA replication timing studies have been limited in scale due to technical challenges. Results We present TIGER (Timing Inferred from Genome Replication), a computational approach for extracting DNA replication timing information from whole genome sequence data obtained from proliferating cell samples. The presence of replicating cells in a biological specimen leads to non-uniform representation of genomic DNA that depends on the timing of replication of different genomic loci. Replication dynamics can hence be observed in genome sequence data by analyzing DNA copy number along chromosomes while accounting for other sources of sequence coverage variation. TIGER is applicable to any species with a contiguous genome assembly and rivals the quality of experimental measurements of DNA replication timing. It provides a straightforward approach for measuring replication timing and can readily be applied at scale. Availability and Implementation TIGER is available at https://github.com/TheKorenLab/TIGER. Supplementary information Supplementary data are available at Bioinformatics online 
    more » « less
  5. Abstract Background

    Most, if not all, green plant (Virdiplantae) species including angiosperms and ferns are polyploids themselves or have ancient polyploid or whole genome duplication signatures in their genomes. Polyploids are not only restricted to our major crop species such as wheat, maize, potato and the brassicas, but also occur frequently in wild species and natural habitats. Polyploidy has thus been viewed as a major driver in evolution, and its influence on genome and chromosome evolution has been at the centre of many investigations. Mechanistic models of the newly structured genomes are being developed that incorporate aspects of sequence evolution or turnover (low-copy genes and regulatory sequences, as well as repetitive DNAs), modification of gene functions, the re-establishment of control of genes with multiple copies, and often meiotic chromosome pairing, recombination and restoration of fertility.

    Scope

    World-wide interest in how green plants have evolved under different conditions – whether in small, isolated populations, or globally – suggests that gaining further insight into the contribution of polyploidy to plant speciation and adaptation to environmental changes is greatly needed. Forward-looking research and modelling, based on cytogenetics, expression studies, and genomics or genome sequencing analyses, discussed in this Special Issue of the Annals of Botany, consider how new polyploids behave and the pathways available for genome evolution. They address fundamental questions about the advantages and disadvantages of polyploidy, the consequences for evolution and speciation, and applied questions regarding the spread of polyploids in the environment and challenges in breeding and exploitation of wild relatives through introgression or resynthesis of polyploids.

    Conclusion

    Chromosome number, genome size, repetitive DNA sequences, genes and regulatory sequences and their expression evolve following polyploidy – generating diversity and possible novel traits and enabling species diversification. There is the potential for ever more polyploids in natural, managed and disturbed environments under changing climates and new stresses.

     
    more » « less