Quantum complexity measures the difficulty of realizing a quantum process, such as preparing a state or implementing a unitary. We present an approach to quantifying the thermodynamic resources required to implement a process if the process’s complexity is restricted. We focus on the prototypical task of information erasure, or Landauer erasure, wherein an -qubit memory is reset to the all-zero state. We show that the minimum thermodynamic work required to reset an arbitrary state in our model, via a complexity-constrained process, is quantified by the state’s . The complexity entropy therefore quantifies a trade-off between the work cost and complexity cost of resetting a state. If the qubits have a nontrivial (but product) Hamiltonian, the optimal work cost is determined by the . The complexity entropy quantifies the amount of randomness a system appears to have to a computationally limited observer. Similarly, the complexity relative entropy quantifies such an observer’s ability to distinguish two states. We prove elementary properties of the complexity (relative) entropy. In a random circuit—a simple model for quantum chaotic dynamics—the complexity entropy transitions from zero to its maximal value around the time corresponding to the observer’s computational-power limit. Also, we identify information-theoretic applications of the complexity entropy. The complexity entropy quantifies the resources required for data compression if the compression algorithm must use a restricted number of gates. We further introduce a , which arises naturally in a complexity-constrained variant of information-theoretic decoupling. Assuming that this entropy obeys a conjectured chain rule, we show that the entropy bounds the number of qubits that one can decouple from a reference system, as judged by a computationally bounded referee. Overall, our framework extends the resource-theoretic approach to thermodynamics to integrate a notion of , as quantified by . Published by the American Physical Society2025
more »
« less
Quantum and Classical Ergotropy from Relative Entropies
The quantum ergotropy quantifies the maximal amount of work that can be extracted from a quantum state without changing its entropy. Given that the ergotropy can be expressed as the difference of quantum and classical relative entropies of the quantum state with respect to the thermal state, we define the classical ergotropy, which quantifies how much work can be extracted from distributions that are inhomogeneous on the energy surfaces. A unified approach to treat both quantum as well as classical scenarios is provided by geometric quantum mechanics, for which we define the geometric relative entropy. The analysis is concluded with an application of the conceptual insight to conditional thermal states, and the correspondingly tightened maximum work theorem.
more »
« less
- Award ID(s):
- 2010127
- PAR ID:
- 10301549
- Date Published:
- Journal Name:
- Entropy
- Volume:
- 23
- Issue:
- 9
- ISSN:
- 1099-4300
- Page Range / eLocation ID:
- 1107
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
- (Ed.)We consider overdamped Brownian particles with two degrees of freedom (DoF) that are confined in a time- varying quadratic potential and are in simultaneous contact with heat baths of different temperatures along the respective DoF. The anisotropy in thermal fluctuations can be used to extract work by suitably manipulating the confining potential. The question of what the maximal amount of work that can be extracted is has been raised in recent work, and has been computed under the simplifying assumption that the entropy of the distribution of particles (thermodynamic states) remains constant throughout a thermodynamic cycle. Indeed, it was shown that the maximal amount of work that can be extracted amounts to solving an isoperimetric problem, where the 2-Wasserstein length traversed by thermodynamic states quantifies dissipation that can be traded off against an area integral that quantifies work drawn out of the thermal anisotropy. Here, we remove the simplifying assumption on constancy of entropy. We show that the work drawn can be computed similarly to the case where the entropy is kept constant while the dissipation can be reduced by suitably tilting the thermodynamic cycle in a thermodynamic space with one additional dimension. Optimal cycles can be locally approximated by solutions to an isoperimetric problem in a tilted lower-dimensional subspace.more » « less
-
We define the notion of one-shot signatures, which are signatures where any secret key can be used to sign only a single message, and then self-destructs. While such signatures are of course impossible classically, we construct one-shot signatures using quantum no-cloning. In particular, we show that such signatures exist relative to a classical oracle, which we can then heuristically obfuscate using known indistinguishability obfuscation schemes. We show that one-shot signatures have numerous applications for hybrid quantum/classical cryptographic tasks, where all communication is required to be classical, but local quantum operations are allowed. Applications include one-time signature tokens, quantum money with classical communication, decentralized blockchain-less cryptocurrency, signature schemes with unclonable secret keys, non-interactive certifiable min-entropy, and more. We thus position one-shot signatures as a powerful new building block for novel quantum cryptographic protocols.more » « less
-
null (Ed.)A bstract Entanglement entropy, or von Neumann entropy, quantifies the amount of uncertainty of a quantum state. For quantum fields in curved space, entanglement entropy of the quantum field theory degrees of freedom is well-defined for a fixed background geometry. In this paper, we propose a generalization of the quantum field theory entanglement entropy by including dynamical gravity. The generalized quantity named effective entropy, and its Renyi entropy generalizations, are defined by analytic continuation of a replica calculation. The replicated theory is defined as a gravitational path integral with multiple copies of the original boundary conditions, with a co-dimension-2 brane at the boundary of region we are studying. We discuss different approaches to define the region in a gauge invariant way, and show that the effective entropy satisfies the quantum extremal surface formula. When the quantum fields carry a significant amount of entanglement, the quantum extremal surface can have a topology transition, after which an entanglement island region appears. Our result generalizes the Hubeny-Rangamani-Takayanagi formula of holographic entropy (with quantum corrections) to general geometries without asymptotic AdS boundary, and provides a more solid framework for addressing problems such as the Page curve of evaporating black holes in asymptotic flat spacetime. We apply the formula to two example systems, a closed two-dimensional universe and a four-dimensional maximally extended Schwarzchild black hole. We discuss the analog of the effective entropy in random tensor network models, which provides more concrete understanding of quantum information properties in general dynamical geometries. We show that, in absence of a large boundary like in AdS space case, it is essential to introduce ancilla that couples to the original system, in order for correctly characterizing quantum states and correlation functions in the random tensor network. Using the superdensity operator formalism, we study the system with ancilla and show how quantum information in the entanglement island can be reconstructed in a state-dependent and observer-dependent map. We study the closed universe (without spatial boundary) case and discuss how it is related to open universe.more » « less
-
The fidelity-based smooth min-relative entropy is a distinguishability measure that has appeared in a variety of contexts in prior work on quantum information, including resource theories like thermodynamics and coherence. Here we provide a comprehensive study of this quantity. First we prove that it satisfies several basic properties, including the data-processing inequality. We also establish connections between the fidelity-based smooth min-relative entropy and other widely used information-theoretic quantities, including smooth min-relative entropy and smooth sandwiched Rényi relative entropy, of which the sandwiched Rényi relative entropy and smooth max-relative entropy are special cases. After that, we use these connections to establish the second-order asymptotics of the fidelity-based smooth min-relative entropy and all smooth sandwiched Rényi relative entropies, finding that the first-order term is the quantum relative entropy and the second-order term involves the quantum relative entropy variance. Utilizing the properties derived, we also show how the fidelity-based smooth min-relative entropy provides one-shot bounds for operational tasks in general resource theories in which the target state is mixed, with a particular example being randomness distillation. The above observations then lead to second-order expansions of the upper bounds on distillable randomness, as well as the precise second-order asymptotics of the distillable randomness of particular classical-quantum states. Finally, we establish semi-definite programs for smooth max-relative entropy and smooth conditional min-entropy, as well as a bilinear program for the fidelity-based smooth min-relative entropy, which we subsequently use to explore the tightness of a bound relating the last to the first.more » « less
An official website of the United States government

