skip to main content


Title: Environment-Assisted Shortcuts to Adiabaticity
Envariance is a symmetry exhibited by correlated quantum systems. Inspired by this “quantum fact of life,” we propose a novel method for shortcuts to adiabaticity, which enables the system to evolve through the adiabatic manifold at all times, solely by controlling the environment. As the main results, we construct the unique form of the driving on the environment that enables such dynamics, for a family of composite states of arbitrary dimension. We compare the cost of this environment-assisted technique with that of counterdiabatic driving, and we illustrate our results for a two-qubit model.  more » « less
Award ID(s):
2010127
NSF-PAR ID:
10301552
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Entropy
Volume:
23
Issue:
11
ISSN:
1099-4300
Page Range / eLocation ID:
1479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a theoretical study of quantum coherent dynamics of a three-level Λ-system driven by a thermal environment (such as blackbody radiation), which serves as an essential building block of photosynthetic light-harvesting models and quantum heat engines. By solving nonsecular Bloch–Redfield master equations, we obtain analytical results for the ground-state population and coherence dynamics and classify the dynamical regimes of the incoherently driven Λ-system as underdamped and overdamped depending on whether the ratio Δ/[ rf( p)] is greater or less than one, where Δ is the ground-state energy splitting, r is the incoherent pumping rate, and f( p) is a function of the transition dipole alignment parameter p. In the underdamped regime, we observe long-lived coherent dynamics that lasts for τ c ≃ 1/ r, even though the initial state of the Λ-system contains no coherences in the energy basis. In the overdamped regime for p = 1, we observe the emergence of coherent quasi-steady states with the lifetime τ c = 1.34( r/Δ 2 ), which have a low von Neumann entropy compared to conventional thermal states. We propose an experimental scenario for observing noise-induced coherent dynamics in metastable He* atoms driven by x-polarized incoherent light. Our results suggest that thermal excitations can generate experimentally observable long-lived quantum coherent dynamics in the ground-state subspace of atomic and molecular Λ-systems in the absence of coherent driving. 
    more » « less
  2. Vehicle to Vehicle (V2V) communication allows vehicles to wirelessly exchange information on the surrounding environment and enables cooperative perception. It helps prevent accidents, increase the safety of the passengers, and improve the traffic flow efficiency. However, these benefits can only come when the vehicles can communicate with each other in a fast and reliable manner. Therefore, we investigated two areas to improve the communication quality of V2V: First, using beamforming to increase the bandwidth of V2V communication by establishing accurate and stable collaborative beam connection between vehicles on the road; second, ensuring scalable transmission to decrease the amount of data to be transmitted, thus reduce the bandwidth requirements needed for collaborative perception of autonomous driving vehicles. Beamforming in V2V communication can be achieved by utilizing image-based and LIDAR’s 3D data-based vehicle detection and tracking. For vehicle detection and tracking simulation, we tested the Single Shot Multibox Detector deep learning-based object detection method that can achieve a mean Average Precision of 0.837 and the Kalman filter for tracking. For scalable transmission, we simulate the effect of varying pixel resolutions as well as different image compression techniques on the file size of data. Results show that without compression, the file size for only transmitting the bounding boxes containing detected object is up to 10 times less than the original file size. Similar results are also observed when the file is compressed by lossless and lossy compression to varying degrees. Based on these findings using existing databases, the impact of these compression methods and methods of effectively combining feature maps on the performance of object detection and tracking models will be further tested in the real-world autonomous driving system. 
    more » « less
  3. Abstract

    Modern quantum technologies rely crucially on techniques to mitigate quantum decoherence; these techniques can be either passive, achieved for example via materials engineering, or active, typically achieved via pulsed monochromatic driving fields applied to the qubit. Using a solid-state defect spin coupled to a microwave-driven spin bath, we experimentally demonstrate a decoherence mitigation method based on spectral engineering of the environmental noise with a polychromatic drive waveform, and show that it outperforms monochromatic techniques. Results are in agreement with quantitative modeling, and open the path to active decoherence protection using custom-designed waveforms applied to the environment rather than the qubit.

     
    more » « less
  4. null (Ed.)
    In this paper, we present design, implementation and evaluation of a control framework, EXTRA (EXperience-driven conTRol frAmework), for scheduling in general-purpose Distributed Stream Data Processing Systems (DSDPSs). Our design is novel due to the following reasons. First, EXTRA enables a DSDPS to dynamically change the number of threads on the fly according to system states and demands. Most existing methods, however, use a fixed number of threads to carry workload (for each processing unit of an application), which is specified by a user in advance and does not change during runtime. So our design introduces a whole new dimension for control in DSDPSs, which has a great potential to significantly improve system flexibility and efficiency, but makes the scheduling problem much harder. Second, EXTRA leverages an experience/data driven model-free approach for dynamic control using the emerging Deep Reinforcement Learning (DRL), which enables a DSDPS to learn the best way to control itself from its own experience just as a human learns a skill (such as driving and swimming) without any accurate and mathematically solvable model. We implemented it based on a widely-used DSDPS, Apache Storm, and evaluated its performance with three representative Stream Data Processing (SDP) applications: continuous queries, word count (stream version) and log stream processing. Particularly, we performed experiments under realistic settings (where multiple application instances are mixed up together), rather than a simplified setting (where experiments are conducted only on a single application instance) used in most related works. Extensive experimental results show: 1) Compared to Storm’s default scheduler and the state-of-the-art model-based method, EXTRA substantially reduces average end-to-end tuple processing time by 39.6% and 21.6% respectively on average. 2) EXTRA does lead to more flexible and efficient stream data processing by enabling the use of a variable number of threads. 3) EXTRA is robust in a highly dynamic environment with significant workload change. 
    more » « less
  5. Abstract

    Fӧrster (or fluorescence) resonance energy transfer (FRET) is a quantifiable energy transfer in which a donor fluorophore nonradiatively transfers its excitation energy to an acceptor fluorophore. A change in FRET efficiency indicates a change of proximity and environment of these fluorophores, which enables the study of intermolecular interactions. Measurement of FRET efficiency using the sensitized emission method requires a donor–acceptor calibrated system. One of these calibration factors named theGfactor, which depends on instrument parameters related to the donor and acceptor measurement channels and on the fluorophores quantum efficiencies, can be determined in several different ways and allows for conversion of the raw donor and acceptor emission signals to FRET efficiency. However, the calculated value of the G factor from experimental data can fluctuate significantly depending on the chosen experimental method and the size of the sample. In this technical note, we extend the results of Gates et al. (Cytometry Part A 95A (2018) 201–213) by refining the calibration method used for calibration of FRET from image pixel data. Instead of using the pixel histograms of two constructs with high and low FRET efficiency to determine theGfactor, we use pixel histogram data from one construct of known efficiency. We validate this method by determining theGfactor with the same constructs developed and used by Gates et al. and comparing the results from the two approaches. While the two approaches are equivalent theoretically, we demonstrate that the use of a single construct with known efficiency provides a more precise experimental measurement of theGfactor that can be attained by collecting a smaller number of images. © 2020 International Society for Advancement of Cytometry

     
    more » « less