Abstract An untapped source of amorphous SiO2, industrially generated Indian biomass ash (SA)—90% amorphous, with composition of ~60% SiO2and ~20% unburnt carbon—can be used to produce cementitious and alkali‐activated binders. This study reports dissolution of amorphous Si from SA in 0.5 mol/L and 1 mol/L aqueous NaOH, with and without added Ca(OH)2, at SA:Ca(OH)2wt% ratios of 100:0, 87.5:12.5, and 82.5:17.5. Monitoring of elemental dissolution and subsequent/simultaneous product uptake by ICP‐OES offers an effective process for evaluating utility of industrial wastes in binder‐based systems. After 28 days in solution, up to 68% of total Si is dissolved from SA in 1 mol/L NaOH, with values as much as 38% lower in the presence of Ca(OH)2, due to the formation of tobermorite‐like C‐S‐H. FTIR,29Si MAS‐NMR, and XRD are used to characterize solid reaction products and observe reaction progress. Product chemistries calculated from ICP‐OES results and verified by selective dissolution in EDTA/NaOH—namely, Ca/Si of 0.6‐1 and Na adsorption of 1‐2 mmol/g—are found to be consistent with those indicated by aforementioned techniques. This indicates the efficacy of ICP‐OES in estimating product chemistry via such a methodology.
more »
« less
In situ quasi-elastic neutron scattering study on the water dynamics and reaction mechanisms in alkali-activated slags
In this study, in situ quasi-elastic neutron scattering (QENS) has been employed to probe the water dynamics and reaction mechanisms occurring during the formation of NaOH- and Na 2 SiO 3 -activated slags, an important class of low-CO 2 cements, in conjunction with isothermal conduction calorimetry (ICC), Fourier transform infrared spectroscopy (FTIR) analysis and N 2 sorption measurements. We show that the single ICC reaction peak in the NaOH-activated slag is accompanied with a transformation of free water to bound water (from QENS analysis), which directly signals formation of a sodium-containing aluminum-substituted calcium–silicate–hydrate (C–(N)–A–S–H) gel, as confirmed by FTIR. In contrast, the Na 2 SiO 3 -activated slag sample exhibits two distinct reaction peaks in the ICC data, where the first reaction peak is associated with conversion of constrained water to bound and free water, and the second peak is accompanied by conversion of free water to bound and constrained water (from QENS analysis). The second conversion is attributed to formation of the main reaction product ( i.e. , C–(N)–A–S–H gel) as confirmed by FTIR and N 2 sorption data. Analysis of the QENS, FTIR and N 2 sorption data together with thermodynamic information from the literature explicitly shows that the first reaction peak is associated with the formation of an initial gel (similar to C–(N)–A–S–H gel) that is governed by the Na + ions and silicate species in Na 2 SiO 3 solution and the dissolved Ca/Al species from slag. Hence, this study exemplifies the power of in situ QENS, when combined with laboratory-based characterization techniques, in elucidating the water dynamics and associated chemical mechanisms occurring in complex materials, and has provided important mechanistic insight on the early-age reactions occurring during formation of two alkali-activated slags.
more »
« less
- Award ID(s):
- 1362039
- PAR ID:
- 10301637
- Date Published:
- Journal Name:
- Physical Chemistry Chemical Physics
- Volume:
- 21
- Issue:
- 20
- ISSN:
- 1463-9076
- Page Range / eLocation ID:
- 10277 to 10292
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Conventional drying of colloidal materials and gels (including cement) can lead to detrimental effects due to the buildup of internal stresses as water evaporates from the nano/microscopic pores. However, for these gel materials the underlying nanoscopic alterations that are, in part, responsible for macroscopically-measured strain values (especially at low relative humidity) remain a topic of open debate in the literature. In this study, sodium-based calcium-alumino-silicate-hydrate (C-(N)-A-S-H) gel, the major binding phase of silicate-activated blast furnace slag (one type of low-CO 2 cement), is investigated from a drying perspective, since it is known to suffer extensively from drying-induced microcracking. By employing in situ synchrotron X-ray total scattering measurements and pair distribution function (PDF) analysis we show that the significant contributing factor to the strain development in this material at extremely low relative humidity (0%) is the local atomic structural rearrangement of the C-(N)-A-S-H gel, including collapse of interlayer spacing and slight disintegration of the gel. Moreover, analysis of the medium range (1.0–2.2 nm) ordering in the PDF data reveals that the PDF-derived strain values are in much closer agreement (same order of magnitude) with the macroscopically measured strain data, compared to previous results based on reciprocal space X-ray diffraction data. From a mitigation standpoint, we show that small amounts of ZrO 2 nanoparticles are able to actively reinforce the structure of silicate-activated slag during drying, preventing atomic level strains from developing. Mechanistically, these nanoparticles induce growth of a silica-rich gel during drying, which, via density functional theory calculations, we show is attributed to the high surface reactivity of tetragonal ZrO 2 .more » « less
-
null (Ed.)In the past decade, there has been increasing attention paid to the recycling of cotton fabric waste. In the present study, different concentrations of sodium hydroxide (NaOH) ranging from 1 M to 4 M were used to thermomechanically deweave cotton fabric. The fabrics treated with 1 M NaOH and 2 M NaOH were partially deweaved, whereas those treated with 3 M NaOH and 4 M NaOH were completely deweaved. Fourier-transform infrared (FTIR) spectroscopy was applied to analyze the chemistry and structure of the cotton fabric. The FTIR spectra indicated that the structure of cotton fabrics treated with 1–2 M NaOH were similar to that of pristine fabric, while the presence of NaOH was observed. In the case of samples treated with 3–4 M NaOH, both the peak positions and the band intensities were changed, in addition to the formation of cellulose II. FTIR spectra for the recycled NaOH-treated cotton fabrics were compared, and no major structural changes were identified. A post-treatment with deionized (DI) water removed excess Na+ ions, with the sample showing a similar molecular structure to that of the pristine material. These results suggest the feasibility of recycling aqueous NaOH for post-washing treatment as a new method for recycling cellulosic fabric waste.more » « less
-
This paper examines the influence of biochar on the properties of alkali-activated slag pastes using two activator solutions, namely NaOH and Na2CO3. The biochar demonstrated different absorption kinetics in the mixture of slag and the two activator solutions. The pastes with biochar showed a delay in the heat flow peak, compared to the pastes without biochar, but the cumulative heat release in these pastes at later hours was increased, compared to the pastes without biochar. It was found that the use of biochar reduced autogenous shrinkage in the pastes and the reduction in autogenous shrinkage was more pronounced in the alkali-activated slag with NaOH, compared to Na2CO3. The void structure of the pastes was investigated using x-ray micro-computed tomography. It was found that refined pore structure due to reduced effective solution/slag in the pastes with biochar was able to compensate for the decreasing effect of biochar voids on compressive strength. The electrical resistivity was shown to be lower in the pastes with biochar.more » « less
-
Abstract Alkaline iron (Fe) batteries are attractive due to the high abundance, low cost, and multiple valent states of Fe but show limited columbic efficiency and storage capacity when forming electrochemically inert Fe3O4on discharging and parasitic H2on charging. Herein, sodium silicate is found to promote Fe(OH)2/FeOOH against Fe(OH)2/Fe3O4conversions. Electrochemical experiments,operandoX‐ray characterization, and atomistic simulations reveal that improved Fe(OH)2/FeOOH conversion originates from (i) strong interaction between sodium silicate and iron oxide and (ii) silicate‐induced strengthening of hydrogen‐bond networks in electrolytes that inhibits water transport. Furthermore, the silicate additive suppresses hydrogen evolution by impairing energetics of water dissociation and hydroxyl de‐sorption on iron surfaces. This new silicate‐assisted redox chemistry mitigates H2and Fe3O4formation, improving storage capacity (199 mAh g−1in half‐cells) and coulombic efficiency (94 % after 400 full‐cell cycles), paving a path to realizing green battery systems built from earth‐abundant materials.more » « less
An official website of the United States government

