skip to main content


Title: Review of Integrin‐Targeting Biomaterials in Tissue Engineering
Abstract

The ability to direct cell behavior has been central to the success of numerous therapeutics to regenerate tissue or facilitate device integration. Biomaterial scientists are challenged to understand and modulate the interactions of biomaterials with biological systems in order to achieve effective tissue repair. One key area of research investigates the use of extracellular matrix‐derived ligands to target specific integrin interactions and induce cellular responses, such as increased cell migration, proliferation, and differentiation of mesenchymal stem cells. These integrin‐targeting proteins and peptides have been implemented in a variety of different polymeric scaffolds and devices to enhance tissue regeneration and integration. This review first presents an overview of integrin‐mediated cellular processes that have been identified in angiogenesis, wound healing, and bone regeneration. Then, research utilizing biomaterials are highlighted with integrin‐targeting motifs as a means to direct these cellular processes to enhance tissue regeneration. In addition to providing improved materials for tissue repair and device integration, these innovative biomaterials provide new tools to probe the complex processes of tissue remodeling in order to enhance the rational design of biomaterial scaffolds and guide tissue regeneration strategies.

 
more » « less
Award ID(s):
1822196
NSF-PAR ID:
10455068
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Healthcare Materials
Volume:
9
Issue:
23
ISSN:
2192-2640
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The immune system plays a crucial role during tissue repair and wound healing processes. Biomaterials have been leveraged to assist in this in situ tissue regeneration process to dampen the foreign body response by evading or suppressing the immune system. An emerging paradigm within regenerative medicine is to use biomaterials to influence the immune system and create a pro-reparative microenvironment to instigate endogenously driven tissue repair. In this review, we discuss recent studies that focus on immunomodulation of innate and adaptive immune cells for tissue engineering applications through four biomaterial-based mechanisms of action: biophysical cues, chemical modifications, drug delivery, and sequestration. These materials enable augmented regeneration in various contexts, including vascularization, bone repair, wound healing, and autoimmune regulation. While further understanding of immune-material interactions is needed to design the next generation of immunomodulatory biomaterials, these materials have already demonstrated great promise for regenerative medicine.

    Lay Summary

    The immune system plays an important role in tissue repair. Many biomaterial strategies have been used to promote tissue repair, and recent work in this area has looked into the possibility of doing repair by tuning. Thus, we examined the literature for recent works showcasing the efficacy of these approaches in animal models of injuries. In these studies, we found that biomaterials successfully tuned the immune response and improved the repair of various tissues. This highlights the promise of immune-modulating material strategies to improve tissue repair.

     
    more » « less
  2. Abstract

    Stem cells have been sought as a promising cell source in the tissue engineering field due to their proliferative capacity as well as differentiation potential. Biomaterials have been utilized to facilitate the delivery of stem cells in order to improve their engraftment and long‐term viability upon implantation. Biomaterials also have been developed as scaffolds to promote stem cell induced tissue regeneration. This review focuses on the latter where the biomaterial scaffold is designed to provide physical cues to stem cells in order to promote their behavior for tissue formation. Recent work that explores the effect of scaffold physical properties, topography, mechanical properties and electrical properties, is discussed. Although still being elucidated, the biological mechanisms, including cell shape, focal adhesion distribution, and nuclear shape, are presented. This review also discusses emerging areas and challenges in clinical translation.

     
    more » « less
  3. Functional repair of osteochondral (OC) tissue remains challenging because the transition from bone to cartilage presents gradients in biochemical and physical properties necessary for joint function. Osteochondral regeneration requires strategies that restore the spatial composition and organization found in the native tissue. Several biomaterial approaches have been developed to guide chondrogenic and osteogenic differentiation of human mesenchymal stem cells (hMSCs). These strategies can be combined with 3D printing, which has emerged as a useful tool to produce tunable, continuous scaffolds functionalized with bioactive cues. However, functionalization often includes one or more post-fabrication processing steps, which can lead to unwanted side effects and often produce biomaterials with homogeneously distributed chemistries. To address these challenges, surface functionalization can be achieved in a single step by solvent-cast 3D printing peptide-functionalized polymers. Peptide-poly(caprolactone) (PCL) conjugates were synthesized bearing hyaluronic acid (HA)-binding (HAbind–PCL) or mineralizing (E3–PCL) peptides, which have been shown to promote hMSC chondrogenesis or osteogenesis, respectively. This 3D printing strategy enables unprecedented control of surface peptide presentation and spatial organization within a continuous construct. Scaffolds presenting both cartilage-promoting and bone-promoting peptides had a synergistic effect that enhanced hMSC chondrogenic and osteogenic differentiation in the absence of differentiation factors compared to scaffolds without peptides or only one peptide. Furthermore, multi-peptide organization significantly influenced hMSC response. Scaffolds presenting HAbind and E3 peptides in discrete opposing zones promoted hMSC osteogenic behavior. In contrast, presenting both peptides homogeneously throughout the scaffolds drove hMSC differentiation towards a mixed population of articular and hypertrophic chondrocytes. These significant results indicated that hMSC behavior was driven by dual-peptide presentation and organization. The downstream potential of this platform is the ability to fabricate biomaterials with spatially controlled biochemical cues to guide functional tissue regeneration without the need for differentiation factors. 
    more » « less
  4. Abstract

    Macrophages are a predominant immune cell population that drive inflammatory responses and exhibit transitions in phenotype and function during tissue remodeling in disease and repair. Thus, engineering an immunomodulatory biomaterial has significant implications for resolving inflammation. Here, a biomimetic and photoresponsive hyaluronan (HA) hydrogel nanocomposite with tunable 3D extracellular matrix (ECM) adhesion sites for dynamic macrophage immunomodulation is engineered. Photodegradative alkoxylphenacyl‐based polycarbonate (APP) nanocomposites are exploited to permit user‐controlled Arg–Gly–Asp (RGD) adhesive peptide release and conjugation to a HA‐based ECM for real‐time integrin activation of macrophages encapsulated in 3D HA–APP nanocomposite hydrogels. It is demonstrated that photocontrolled 3D ECM–RGD peptide conjugation can activate αvβ3 integrin of macrophages, and periodic αvβ3 integrin activation can enhance anti‐inflammatory M2 macrophage polarization. Altogether, an emerging use of biomimetic, photoresponsive, and bioactive HA–APP nanocomposite hydrogel is highlighted to command 3D cell–ECM interactions for modulating macrophage polarization, which may shed light on cell–ECM interactions in innate immunity and inspire new biomaterial‐based immunomodulatory therapies.

     
    more » « less
  5. Polymeric biomaterials exhibit excellent physicochemical characteristics as a scaffold for cell and tissue engineering applications. Chemical modification of the polymers has been the primary mode of functionalization to enhance biocompatibility and regulate cellular behaviors such as cell adhesion, proliferation, differentiation, and maturation. Due to the complexity of the in vivo cellular microenvironments, however, chemical functionalization alone is usually insufficient to develop functionally mature cells/tissues. Therefore, the multifunctional polymeric scaffolds that enable electrical, mechanical, and/or magnetic stimulation to the cells, have gained research interest in the past decade. Such multifunctional scaffolds are often combined with exogenous stimuli to further enhance the tissue and cell behaviors by dynamically controlling the microenvironments of the cells. Significantly improved cell proliferation and differentiation, as well as tissue functionalities, are frequently observed by applying extrinsic physical stimuli on functional polymeric scaffold systems. In this regard, the present paper discusses the current state-of-the-art functionalized polymeric scaffolds, with an emphasis on electrospun fibers, that modulate the physical cell niche to direct cellular behaviors and subsequent functional tissue development. We will also highlight the incorporation of the extrinsic stimuli to augment or activate the functionalized polymeric scaffold system to dynamically stimulate the cells. 
    more » « less